• 제목/요약/키워드: Nearest Neighbor Search

검색결과 123건 처리시간 0.025초

DGR-Tree를 위한 KNN 검색 알고리즘 (A K-Nearest Neighbor Search Algorithm for DGR-Tree)

  • 이득우;강홍구;한기준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.799-800
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경에서의 LBS에서는 점차 대용량화 및 밀집화 경향을 보이는 POI에 대한 빠른 KNN 검색이 중요하다. 따라서 본 논문에서는 기존의 DGR-Tree를 위해서 POI에 대한 빠른 KNN 검색을 위한 KNN 검색 알고리즘을 제시하고, 또한 성능 평가를 통해 그 우수성을 입증한다.

머신러닝 기법을 이용한 약물 분류 방법 연구 (A Study on the Drug Classification Using Machine Learning Techniques)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.8-16
    • /
    • 2024
  • 본 논문에서는 인구통계학적, 생리학적 특성을 기반으로 환자에게 가장 적합한 약물을 예측하는 것을 목표로 하는 약물 분류 시스템을 제시한다. 데이터 세트에는 적절한 약물을 결정하기 위한 목적으로 연령, 성별, 혈압(BP), 콜레스테롤 수치, 나트륨 대 칼륨 비율(Na_to_K)과 같은 속성들이 포함된다. 본 연구에 사용된 모델은 KNN(K-Nearest Neighbors), 로지스틱 회귀 분석 및 Random Forest이다. 하이퍼파라미터를 최적화하기 위해 5겹 교차 검증을 갖춘 GridSearchCV를 활용하였으며, 각 모델은 데이터 세트에서 훈련 및 테스트 되었다. 초매개변수 조정 유무에 관계없이 각 모델의 성능은 정확도, 혼동 행렬, 분류 보고서와 같은 지표를 사용하여 평가되었다. GridSearchCV를 적용하지 않은 모델의 정확도는 0.7, 0.875, 0.975인 반면, GridSearchCV를 적용한 모델의 정확도는 0.75, 1.0, 0.975로 나타났다. GridSearchCV는 로지스틱 회귀 분석을 세 가지 모델 중 약물 분류에 가장 효과적인 모델로 식별했으며, K-Nearest Neighbors가 그 뒤를 이었고 Na_to_K 비율은 결과를 예측하는 데 중요한 특징인 것으로 밝혀졌다.

Image Tracking Algorithm using Template Matching and PSNF-m

  • Bae, Jong-Sue;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.413-423
    • /
    • 2008
  • The template matching method is used as a simple method to track objects or patterns that we want to search for in the input image data from image sensors. It recognizes a segment with the highest correlation as a target. The concept of this method is similar to that of SNF (Strongest Neighbor Filter) that regards the measurement with the highest signal intensity as target-originated among other measurements. The SNF assumes that the strongest neighbor (SN) measurement in the validation gate originates from the target of interest and the SNF utilizes the SN in the update step of a standard Kalman filter (SKF). The SNF is widely used along with the nearest neighbor filter (NNF), due to computational simplicity in spite of its inconsistency of handling the SN as if it is the true target. Probabilistic Strongest Neighbor Filter for m validated measurements (PSNF-m) accounts for the probability that the SN in the validation gate originates from the target while the SNF assumes at any time that the SN measurement is target-originated. It is known that the PSNF-m is superior to the SNF in performance at a cost of increased computational load. In this paper, we suggest an image tracking algorithm that combines the template matching and the PSNF-m to estimate the states of a tracked target. Computer simulation results are included to demonstrate the performance of the proposed algorithm in comparison with other algorithms.

Hierarchical Structured Multi-agent for Distributed Databases in Location Based Services

  • Mateo Romeo Mark A.;Lee Jaewan;Kwon Oh-Hyun
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제14권3호
    • /
    • pp.17-22
    • /
    • 2005
  • Location management is very important in location-based services to provide services to the mobile users like banking, city guides and many more. Ubiquitous and mobile devices are the source of data in location management and its significant operations are update and search method. Some studies to improve these were presented by using optimal sequential paging, location area scheme and hierarchical database scheme. In addition, not all location services have the same access methods on data and it lead to difficulties of providing services. A proposed location management of multi-agent architecture is presented in this study. It shows the coordination of the agents on the distributed database of location-based services. The proposal focuses on the location management of the mobile object presented in a hierarchical search and update. Also, it uses a nearest neighbor technique for efficient search method of mobile objects.

  • PDF

k-NN Join Based on LSH in Big Data Environment

  • Ji, Jiaqi;Chung, Yeongjee
    • Journal of information and communication convergence engineering
    • /
    • 제16권2호
    • /
    • pp.99-105
    • /
    • 2018
  • k-Nearest neighbor join (k-NN Join) is a computationally intensive algorithm that is designed to find k-nearest neighbors from a dataset S for every object in another dataset R. Most related studies on k-NN Join are based on single-computer operations. As the data dimensions and data volume increase, running the k-NN Join algorithm on a single computer cannot generate results quickly. To solve this scalability problem, we introduce the locality-sensitive hashing (LSH) k-NN Join algorithm implemented in Spark, an approach for high-dimensional big data. LSH is used to map similar data onto the same bucket, which can reduce the data search scope. In order to achieve parallel implementation of the algorithm on multiple computers, the Spark framework is used to accelerate the computation of distances between objects in a cluster. Results show that our proposed approach is fast and accurate for high-dimensional and big data.

최적화 기법을 통한 강우관측소의 고도별 분포특성 검토 (Evaluation of Rain Gauge Distribution Characteristics by Altitude using Optimization Technique)

  • 이지호;김종근;주홍준;전환돈
    • 한국습지학회지
    • /
    • 제19권1호
    • /
    • pp.103-111
    • /
    • 2017
  • 본 연구에서는 강우관측소의 고도별 공간분포의 적정성을 평가하기 위한 방안으로 고도별 강우관측소의 최근린지수를 산정하고, 현재 강우관측소 공간분포의 적정성을 평가하였다. 등면적비를 이용하여 고도를 구분하고, 고도마다 다른 지형적인 조건을 고려하기 위하여 주어진 지형조건내에서 가능한 최대 NNI을 최적화 기법의 하나인 화음탐색법을 이용하여 산정하였다. 이와 같이 고도별로 현재 상태 및 최대 NNI를 산정한 후 이 두 값의 차이를 바탕으로 고도별로 강우관측소 분포를 평가하였다. 그 결과 고도가 높아질수록 공간분포가 상대적으로 취약함을 확인하였다. 추후 강우관측망을 신설할 경우 고도별 특성을 반영한다면 보다 효율적인 강우관측망의 구축이 가능할 것으로 판단된다.

보로노이 다이어그램의 경계지점 최소거리 행렬 기반 k-최근접점 탐색 알고리즘 (k-NN Query Processing Algorithm based on the Matrix of Shortest Distances between Border-point of Voronoi Diagram)

  • 엄정호;장재우
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권1호
    • /
    • pp.105-114
    • /
    • 2009
  • 최근 사용자에게 자신과 가장 가까운 k 개의 주유소, 레스토랑, 은행 등의 POI(Point Of Interest) 정보를 추천해주는 위치 기반 서비스가 텔레매틱스, ITS(Intelligent Transport Systems), 키오스크(kiosk)등의 어플리케이션에서 필요로 하고 있다. 이를 위해, 보로노이 다이어그램 k-최근접점 탐색 알고리즘이 제안되었다. 이는 보로노이 다이어그램에서 각 POI의 네트워크의 거리를 미리 계산한 파일을 이용하여 k-최근접점 탐색을 수행한다. 그러나 이 알고리즘은 보로노이 다이어그램 확장에 따른 비용 문제를 야기한다. 따라서 본 논문에서는 보로노이 다이어그램의 경계지점마다 각각에 대하여 최소거리 행렬을 생성하는 알고리즘을 제안한다. 또한 k 개의 POI를 탐색하기 위해, 최소거리 행렬을 이용한 k-최근접점 탐색 알고리즘을 제안한다. 제안하는 알고리즘은 미리 계산된 경계 지점 간 최소거리 행렬을 통해 탐색하므로, k-최근 접점 탐색 시 보로노이 다이어그램의 확장비용을 최소화한다. 아울러 기존 연구와의 성능비교를 통해 제안하는 알고리즘이 기존 알고리즘에 비해 검색시간 측면에서 성능이 우수함을 보인다.

  • PDF

데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로 (The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction)

  • 천세학
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.239-251
    • /
    • 2019
  • 본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.

Clustering Techniques for XML Data Using Data Mining

  • Kim, Chun-Sik
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2005년도 e-Biz World Conference 2005
    • /
    • pp.189-194
    • /
    • 2005
  • Many studies have been conducted to classify documents, and to extract useful information from documents. However, most search engines have used a keyword based method. This method does not search and classify documents effectively. This paper identifies structures of XML document based on the fact that the XML document has a structural document using a set theory, which is suggested by Broder, and attempts a test for clustering XML document by applying a k-nearest neighbor algorithm. In addition, this study investigates the effectiveness of the clustering technique for large scaled data, compared to the existing bitmap method, by applying a test, which reveals a difference between the clause based documents instead of using a type of vector, in order to measure the similarity between the existing methods.

  • PDF

DGR-Tree : u-LBS에서 POI의 검색을 위한 효율적인 인덱스 구조 (DGR-Tree : An Efficient Index Structure for POI Search in Ubiquitous Location Based Services)

  • 이득우;강홍구;이기영;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권3호
    • /
    • pp.55-62
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경에서의 LBS, 즉 u-LBS는 실세계의 수많은 객체가 위치정보와 밀접히 연관된 대용량 데이타를 대상으로 한다. 특히, 사용자의 위치 정보와 관련하여 검색하려고 하는 객체인 POI에 대한 빠른 검색이 중요하다. 따라서 u-LBS에서 POI의 효율적인 검색을 위한 인덱스 구조에 대한 연구가 필요하다. 본 논문에서는 u-LBS에서 정적 POI를 대상으로 이를 효율적으로 검색하기 위한 DGR-Tree를 제시한다. DGR-Tree는 변형된 R-Tree를 기본 인덱스로 하고 동적 레벨 그리드를 보조 인덱스로 사용하는 구조이다. DGR-Tree는 점 데이타에 적합하도록 최적화하고 있으며 리프 노드 간 겹침 문제를 해결한다. DGR-Tree에서 동적 레벨 그리드는 점 데이타의 밀집도에 따라 동적으로 구성되며, 각 셀은 DGR-Tree의 리프 노드와 연계를 위한 포인터를 저장하여 리프 노드를 직접 접근하도록 함으로써 인덱스 접근 성능을 향상시킨다. 또한, 본 논문에서는 DGR-Tree를 위한 KNN 검색 알고리즘을 제시한다. 이 알고리즘에서는 KNN 검색 시 후보 셀에 빠르게 접근하기 위하여 동적 레벨 그 리드를 활용하며, 후보를 노드별로 구분하여 저장함으로써 후보 리스트 내에서의 정렬 비용을 감소시킨다. 마지막으로 실험을 통해 DGR-Tree의 우수성을 입증하였다.

  • PDF