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Image Tracking Algorithm using Template Matching and PSNF-m

Jong Sue Bae and Taek Lyul Song

Abstract: The template matching method is used as a simple method to track objects or patterns
that we want to search for in the input image data from image sensors. It recognizes a segment
with the highest correlation as a target. The concept of this method is similar to that of SNF
(Strongest Neighbor Filter) that regards the measurement with the highest signal intensity as
target-originated among other measurements. The SNF assumes that the strongest neighbor (SN)
measurement in the validation gate originates from the target of interest and the SNF utilizes the
SN in the update step of a standard Kalman filter (SKF). The SNF is widely used along with the
nearest neighbor filter (NNF), due to computational simplicity in spite of its inconsistency of
handling the SN as if it is the true target. Probabilistic Strongest Neighbor Filter for m validated
measurements (PSNF-m) accounts for the probability that the SN in the validation gate originates
from the target while the SNF assumes at any time that the SN measurement is target-originated.
It 1s known that the PSNF-m is superior to the SNF in performance at a cost of increased
computational load. In this paper, we suggest an image tracking algorithm that combines the
template matching and the PSNF-m to estimate the states of a tracked target. Computer
simulation results are included to demonstrate the performance of the proposed algorithm in
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comparison with other algorithms.
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1. INTRODUCTION

In case we have prearranged target information, and
want to search for and track it, the template matching
method 1s simplest and widely used for detecting
targets in image information, which is obtained from
IR (infrared) sensor. The Template matching method
is searching for the most similar image pattern in the
image with a template image obtained from
prearranged information. As we use it, it is important
what similarity index is used for comparing the
template with input image. The similarity index is
determined on the following basis [9].

* It does not have to be sensitive to noise of the
image.
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It must be insensitive to changing image luminance.
« [ts calculation burden must be light.

In many cases, MAD (Mean Absolute Difference),
MSE (Mean Square Error), Luminance similarity,
Contrast similarity, Correlation, and Hausdorff
Distance are used to determine the similarity index by
taking the above statements into account [8,17].

In this paper, we choose a correlation as the
similarity index and present the scheme in detail,
which makes measurements for the tracking filter by
using the template matching method in Section 2.

Because a recent target tracking system tends to
integrate the signal processing unit for sensor signal
and the data processing unit for target tracking, and
because it requires real-time signal and data
processing, a target tracking algorithm with a lower
computational burden and an efficient data association
scheme is needed.

In case of single or multi target tracking under a
clutter environment, there are Nearest Neighbor
algorithm systems (NN), Strongest Neighbor ones
(SN), and Probabilistic Data Association ones (PDA)
as the data association algorithm that associates the
measurements with target tracks. NN uses position
information of measurements, SN uses intensity
information of measurements, and PDA considers all
measurements in the validation gate (VG) [1]. Though
PDA algorithm systems have the best performance
among these algorithms, they take long time for
computation.
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As a component of a system that integrates signal
processing with data processing, a tracking filter using
a simple, fast, and efficient data association algorithm
18 a reasonable approach. From this point of view, a
tracking filter using an SN data association algorithm
is a charming method, and if its track maintenance
performance can be made accurate enough, it can be
fully applicable.

In this paper, we suggest a target tracking algorithm
using a template matching method as well as a PSNF-
m algorithm to track the target in an image sequence.
In Section 3, we explain the PSNF-m algorithm,
experimental results are given in Section 4, and we
conclude the paper in Section 5.

2. TEMPLATE MATCHING FOR MAKING
MEASUREMENT

2.1. Template matching by using correlation

Refer to introduction: various similarity indices are
used in the template matching method. In this paper,
we make use of statistical correlation between the
template and overlapped area in the input frame as
similarity index defined as (1).

ST,y =1t (1)
O'TO'T +C2
where
O7r =
1 M N (2)
W_IQ_ZO{T(X,-,I;)—#T}{I(X;-,Y-)f,u;}.
=0 j=

f#r and o7 correspond to the mean and standard
deviation of template intensity respectively. u; and

o; correspond to the mean and standard deviation of

intensity of overlapped area in the input frame
respectively. The constant C, is included to avoid

instability when the denominator is very close to zero.
Because S(7,/) is a correlation value, its range is
—1<S(T,I)<1. As the S(T]) value gets closer to 1,

the overlapped area in the input frame is very similar
to the template. Therefore we regard the position with
the maximum value of S(7/) as the target position.

2.2. Signal intensity distribution of target and clutter

The target tracking filter, such as PSNF-m which
we will explain in Section 3, uses a point
measurement of target and clutter. But the template
matching result is not a point but an area. Therefore, it
is necessary to define the target and clutter to get the
measurement used in the PSNF-m algorithm.

Target measurement position is defined as the
center position of the area of which correlation,
greater than the threshold, is the greatest one among

Fig. 1. Definition of target and clutter.

the other ones over the threshold as the result of
template matching. Target intensity is defined as the
correlation value. Like the preceding, clutter position
is defined as the center position of the area of which
correlation is greater than the threshold except that of
the target. Clutter intensity is defined as its correlation
value.

While deriving the PSNF-m algorithm, we assume
that target and clutter signal intensity have the
Gaussian distribution. Distribution parameters, such a
mean and standard deviation, are obtained from
experimental images and they apply to the PSNF-m
algorithm.

At first, we create a noisy environment by adding
Gaussian noise to find the parameters of the intensity
distribution. Regarding the designated position as
target, we perform the template matching to the entire
image. In this way, we can classify the target and
clutter signal because we know where the target is and
where the clutters are.

~ When we accomplish the template matching with
the 24 X 24 size template for the 320><240 size search
image, approximately 64000 measurements are
generated per one frame. The distribution of the
clutter signal is obtained by drawing a histogram of
measurements, except a target measurement from all

sigma ofNoise | 16
1D ] | 1 1 | I 1 1 !

Fig. 2. Signal intensity distribution of target and
clutter measurement.
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Fig. 3. Approximated Gaussian distribution of target
and clutter intensity.

measurements. Since clutter measurements are taken
as large numbers from just one frame, about 10 frames
are enough to obtain the clutter distribution.

Because we can get just one target measurement per
frame, we must perform template matching for many
more frames to calculate target intensity distribution.
Therefore we do this for about 300~400 frames to
gather target measurement information.

Fig. 2. shows the histogram of target and clutter
signal intensity after Gaussian noise of which standard
deviation of 15 is added to the search image.

On the basis of information gotten from Fig. 2, we
can approximate the distribution of target and clutter
to the Gaussian distribution represented in Fig. 3.

2.3. CA-CFAR algorithm to arrange the measurements

When using the template matching method to
generate the measurements, matching is performed
moving the mask pixel by pixel in the VG, and it
makes too many measurements per frame.

The PSNF-m algorithm presented in this paper sorts
the measurements by intensity and chooses the
maximum intensity measurement for the filter update
step. If there are excessive measurements in the VG, it
takes much time to sort the measurements. And
because the PSNF-m algorithm 1s limited in that the
maximum measurement number 1S m, the number of
measurements in the VG must be restricted to m or
less.

To solve this problem, an algorithm that doesn’t get
rid of the target measurement but reduces the number
of clutter measurements efficiently is needed.

Constant false alarm rate (CFAR) processors are
useful for detecting targets in background for which
all parameters in the statistical distribution are not
known and may be nonstationary [13]. The threshold
in a CFAR detector is set on a cell by cell basis using
estimated noise power by processing a group of
reference cells surrounding the cell under
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Fig. 4. GOCA-CFAR method.

2000 3000 4000 5000 6000 7000

Fig. 5. Result of GOCA-CFAR.

investigation [13].

The widely used CFAR algorithms are “Cell
Averaging (CA)-CFAR,” “Greatest Of' (GO)-CFAR,”
“Smallest Of (SO)-CFAR,” “Order Statistics (OS)-
CFAR,” and “Trimmed Mean (TM)-CFAR” [12-13].

Among the abovementioned CFAR algorithms, we
apply Greatest Of Constant Average (GOCA) CFAR
to the template matching method to reduce the
measurements until its number 1s under m. Fig. 4 is
the block diagram of the GOCA-CFAR algorithm.

Fig. 5 shows the result of adapting this algorithm to
the measurement to arrange it. The result in Fig. 5 is
obtained by running the GOCA-CFAR algorithm
beginning with 6400 measurements until its number is
13 or less.

3. TARGET TRACKING BY USING
PSNF-M ALGORITHM

3.1. PSNF-m algorithm

The existing probabilistic strongest neighbor filter
(PSNF) accounts for the probability that the strongest
neighbor (SN) in the validation gate is originated from
the target while the strongest neighbor filter (SNF)
assumes at any time that the SN measurement is
target-originated. The PSNF-m algorithm is a
modified form of the probabilistic strongest neighbor
filter (PSNF) algorithm [3] taking into account the
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number of validated measurements [2,7]. It is known
that the existing PSNF-m is superior to the SNF and
PSNF 1in ftracking performance. The PSNF-m
algorithm 1s developed to reduce the computational
load, which 1s the defect of the PSNF algorithm, and
to adapt it for a real environment of which exact
clutter density cannot be gotten by calculating target
probability density, as PDAF-AI [4], correlated with 3
events, which selects the SN measurement by
considering the number of measurements in the
validation gate whose center is the current target’s
predicted position [2]. The problem of SNF is solved
by applying the Bayesian approach. Viewing from the
Bayesian standpoint, target tracking is to update the
conditional probability density function (cpdf)
recursively, which means the current target’s status
when the cumulating sensor measurements and the
prior1 information are given. Therefore it is very
important for solving the problem of SNF to calculate
the cpdf of the target state variable in case of being
given the possible event correlated with the data
association that uses the SN measurement. As a result
of applying the Bayesian approach to calculate the
cpdf of the SN measurement, the PSNF, in contrast to
the PDAF, accounts for the probability of the possible
events that is correlated with the data association
method using the SN measurement. The PSNF-m
algorithm is to improve the PSNF algorithm by
regarding the cpdf of the SN measurement as the
function of the m validated measurements in the
validation gate.

In contrast to the PSNF-m proposed in [2], we
suppose that the target and clutter signal intensity are
based on the Gaussian distribution, and the new
algorithm is proposed in this paper. The following 8
assumptions are used in this paper.

Assumption 1: The measurement signal intensity
‘a’ 1s Gaussian-distributed with probability density
function (pdf)

) =—h—exp| -2 ®)
a)= exp| —
1 270y g 20'{2
The clutter signal amplitude satisfies
2
1 (a -V, )
a)= exp| — : 4
fo ( ) 2o, 7 26 “

c

Assumption 2: The number of validated true

measurement is denoted by m’, and m’ is at most 1.

The probability that m’ =1 is P(m’ =1)=P,P;

where Pp is the probability of target detection
indicating that the target signal amplitude exceeds a

threshold 7z; and F; is the probability that the
target falls inside the validation gate. Pp, satisfies

Pp = | fila)da - (5)

from Assumption 1, and the probability that the false
measurement signal exceeds the threshold 7 1is

P, = j_’oo fo(a)da. (6)

Assumption 3: The number of validated false
measurements in the validation gate, denoted by m’, is
Poisson distributed with a spatial density A such that

The volume of the n-dimensional gate satisfies
1 n

Vg =C,|S[272 where |S| is the determinant of

covariance of residual, \/; is gate size and C; =2,

4
C,=rn, G =§7z etc.

Assumption 4: The state prediction error e, =

x, —x; for any given time £k i1s a zero-mean

Gaussian process with a covariance P, such that
& ~ N(e;0,B). (7)

Assumption 5: The validated false measurements
at any time are i.i.d. uniformly distributed over the
gate.

Assumption 6: The location and amplitude of a
validated false measurement are independent of the
true measurement at any time and other validated false
measurements at any other time.

Assumption 7: Amplitude is independent of the
location.

Assumption 8: The target is existing and can be
detectable, i.e., it is perceivable [6].

There exist the following three events related to
data association with the SN measurement.

Mr: The SN measurement is target-originated.

My : The SN measurement is from a false target.

M, : There is no validated measurement.

Because the derivation of PSNF-m with the eight
assumptions above and possible three events to select
the SN measurement is fully presented in [7], it 1s
omitted in this paper. The SN data association
algorithm, which uses signal amplitude to identify the
target uses it to do the target: however, it uses position
information of SN to update the filter states. From the
Assumption 7, this amplitude information and
position information is independent of each other. The
PSNF algorithm uses signal amplitude information for
calculating the probability of M7 and Mp. We use the
pdf of signal amplitude of M7y and My obtained in
Section 2.2.
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Under the conditions that the number of validated
measurements is m and the SN measurement is target-

originated, the cpdf of the signal amplitude a’ =a

satisfies the following Bayes’ rule [5]

B 1
P(M T,m)

f(a|Mp,m) f(a,Mr,m), (8)
where f(a,Mp,m) is the joint pdf in which the

validated target amplitude o’ =a is the strongest

among the m validated measurements under the
assumptions of m' =1 and m’ =m-1. Applying
the Bayes’ rule [5] againto f(a, My, m) satisfies

f(a,MT,m)
:P{prT:@mTszF:mmﬂ

.f(a‘mT =1,m" :m—l) )
'P(mT zl)P(mF :m—l).

Similarly, under the conditions that the number of
validated measurements is m and the SN measurement
is clutter-originated, the cpdf of the signal amplitude
d = a satisfies the following Bayes’ rule

1
P(Mp,m)

where f(a,My,m) is the joint pdf in which the

validated target amplitude ¢ = a is the strongest
among the m validated measurements under the
assumption that the number of validated false
measurements 7’ is over 1 and the number of target
m' can be 0 or 1. Applying the Bayes’ rule to

f(a,MF,m) satisfies

f(a,MF,m)
=P@@

f(a|Mp,m)=

f(a,MF,m), (10)

at :a,mT :0,mF =m)

e, (a‘mF :m)xP(mT :0);1]; (m) (11)

+P(MF a =am’ =1,m" =m—1)

fe, (a m" =m—1)><P(mT :I)yF (m—1).

Je; (aImF :m) denotes the cpdf of amplitude a of

the clutter-originated SN measurement, of which
amplitude higher than the threshold 7, under the

assumption that the number of validated false

measurements m’ =m and fe, (a‘mF =m —1) denotes

the cpdf of amplitude a of the clutter-originated SN

Fem-1 7]
In the case of M,, it is necessary to know the

measurement under the assumption m

number of measurements m and the distribution
f (DT |M »,m) to derive the covariance update

algorithm. D' is the normalized distance squared
(NDS) of the target. Note that the NDS of a

measurement z, 18 defined as Dy =(z; —Zz; )T
Sy 1(zk —Z,) inwhich z; is the predicted measure-
ment and S; is the measurement residual covariance
matrix. If we represent D' =D, f (DT\M F,m) 1S

expressed as

(D" |Mp,m)
1
- P(Mp,m)

nVv
=L N(DT)
2D

f(DT:vMFsm)

(1= Pp 1y = D" )t (m) + Py (1= Py) My = D" Y (m —1)

(1= PP )up (m) + Pp P (1~ Py) pp (m 1)
(12)
The probability weighting for M, is evaluated from
the a posteriori probabilities as

f(D,a,My,m
f(D,a,MT,m)+f(D,a,MF,m)
where by Assumptions 5 and 7
f(DaaaMTsm):f(D’a:‘MTam)f(asMTam) (14)

= f(D|M7) f(a, My, m),
f(D,a,Mp,m)y= f(D|My)f(a,Mg,m). (15)

N(D), f(D'MF) :71-, and

G G
ARa,Mrm) and fa,Mr,m) are expressed in (9) and (11)
respectively. The PSNF-m algorithm is summarized in
Table 1.

In Table 1, the constant 0<Cr, <1 is a scaling

Note that f(DIMT) =

factor for the gating effect on the residual covariance
[3] and it satisfies

| q*e *dq

_ . t_
Crg = P v N(";0,5)dv

K is the Kalman gain, and S stands for the
measurement residual covariance.
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Table 1. PSNF-m algorithm.

(1) Prediction step
Identical to the standard Kalman filter
(2) Update step

(D For the case of M,
X = %

- = Ipls(1-Crg)
Be=Fyo=F+ =
1- P, P,

KSKT

@ For the case of M,

P,=1 for m=1

‘i:k:fk +K/81V*, V*:Zk_H)?k
Py =Py, (1= B)+ (B —KSKT)

+ ﬁoﬂ] KV*V*TKT
where

Pomy = B —KSK'

N (1 —‘PDPGCTg)/lVG +PDPGCTg(1 —?A)m

(1- Py Py)AV + PpPy(1- P)m

(16)
(17)

(18)
(19)

(20)

KSKT

21)

m—1
D 1 ®© 1 ®© r r
P, _gL Nl(a){l—g;jf No(a )da} da

(P;=1 for m=1)

5 - f(D.a,Mr,m)
f(D,a,MT,m)+f(D,a,MF,m)
_ P4
Pra+ Pz + Pic
where

P4 =T.Ny(a)N; (D)

Pip =(1-PpPg)AT, M(a)

No(a) 1

Pic =F;[Pp+G, -1](m-1)

G, -1

Pfa VG

7. =1+

C

(22)
(23)

(24)

(25)

(26)

2
1 (a— )
N = e —
1(0) \/ﬂat xp{ 20'&‘2 ]
1 D
N (D)= ——
1(P) zﬁ|s|“zexp[ 2]

Po=1-p (27)

3.2. Track initiation with track score

Track score 1, 1is calculated to initiate the PSNF-
m filter and to decide whether to maintain the track or
not. Assuming that the target and clutter signal
amplitude follow the Gaussian distribution, s can be

described by

1-0)u
Pl (29)
1-om,
where
Hy =gy + Lo (- 24)), (30)
m —_
5:PDPG_2V_PDPG(1_PA(7”))
< (31)
m —
_IPDNl(Zk)PA(m)a

and P,(m) is given by (22).

[ Input image ]
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Matching for
entire image

v

VG generation
Allocation

—>»

A 4
Next input frame No

|

Matching for inside
area of VG
Yes Filter processing

Calculate z

during some frame
Hy > He ?

Fig. 6. Target tracking filter flow chart.
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To initiate the filter, the following steps are
processed.

a) We perform the template matching to the whole
search image by using the given template. As the
result of matching, we allocate the VG whose
center is equal to the area’s center that has the
largest correlation value. We also initiate the track
score as L.

b) When the next frame is given, we perform the
matching only to the inside of VG and select the
SN measurement. Then we can initiate the filter
state variables and parameters by using two
measurements from the first and second frame and

calculate the track score 4.

c) We compute the track score p; for every

sequential input frame. If g, remains smaller

than 4. before the fixed frame, its track is

terminated and a new target track is generated.
Fig. 6 1s the flow chart of the tracking filter.

4. SIMULATION RESULTS

Target tracking simulation is accomplished by the
input movie with AVI format. The rate of the input
movie 1s 33 frames/sec and the PSNF-m filter is
processed for each frame.

The simulation program is roughly organized into
three parts, which are template matching, GOCA-
CFAR, and PSNF-m filter.

We use a 24 X 24 size template such as Fig. 8 from
the reference image to process the template matching

After the template is generated, we add the
Gaussian noise to the mput frame to make a noisy
environment. The mean of Gaussian noise is 0 and the
standard deviation is 15.

Template matching is executed for the entire noise-
‘added image when the tracking filter is not initiated
yet. In contrast to the above statement, when the filter
is initiated, matching is performed to the inside of VG
to get the measurements. If the filter track isn’t
initiated, it has to be initiated at first. The track
initiation is processed by applying the method

Fig. 7. Simulation block diagram.

Fig. 8. Reference image.

proposed in Section 3.2. After track initiation, we
perform the filter update and prediction step and
calculate the track score to determine whether to
maintain the track or not for every frame.

As the frame goes on, the size and shape of the
target in the input image differ from those in the
reference image. Therefore, the template must be
updated to maintain the target track. There are many
techniques to update the template [10,16]. In this
paper, we don’t use a complex method but a simple
one for template updating. The template update
equation is presented in (32)

T(X,Y)=aT(X,))+(1-a) (X +X,.Y +Y,),

(32)
where o is the template update parameter. If o 1is
equal to 1, the template remains in its initial state. But
if a 1is equal to 0, the template is updated by using
the current measurement’s position as a new position
of the template. Template update is processed one
time per three frames.

The filter parameters used in PSNF-m follow.

1 01 0 100 0 0 O
01 0 1 0 100 0 O
®=lo 010 €0 o0 o1 07
00 0 1 0 0 0 01
) . (33)

100 0 0 0]
2
po| L e L
0 0O 0.1 0 0 22
0 0 0 01
P, =099, A=0.0016. (35)

We assume that the maximum number of
measurement m is 13. The mean clutter density A 1s
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m—1
Ve

number of m is needed for the filter update step and

track score calculation. Because it varies with the

distribution of the clutter and target amplitude, it is

given from the table made in advance in case of the

o, standard deviation of Gaussian noise being equal
to 15, and the m varying from 1 to 13.

When the o of the Gaussian noise added to the

input 1mage is equal to 15, the detecting probability

Pp 1s gained from the distribution of the clutter and

given by A= Also P,(m) related to the

(b)

o

Fig. 9. (a) Beginning frame (b) Frame #100 (c) Frame
#200 (d) Frame #300 (e) Final Frame.
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Fig. 10. The change of the track score value.

target amplitude. According to the distribution of the
clutter and target amplitude assumed such as Fig. 3,

The threshold of the track score . is resolved by

P, and it is set on 0.75 when the o=15. If

does not exceed . in the 6th frame, the track isn’t
initiated.

From Fig. 9(a) to Fig. 9(e), the pictures show the
simulation results on the condition of o =15 for each
frame respectively.

The left images are original input images and the
rights are noise-added. Though the position and the
size of target vary continuously, the tracking filter
traces the target constantly. Fig. 10 shows the plot of
track score.

We must examine the accuracy of filter estimates to
analyze filter performance. The filter state error
between the true target state and the filter estimate
state has to be examined to do that; it is impossible,
however, to know the true target state for each frame
because of the characteristics of the image target.
Therefore, we assume that the SN measurement in the
VG is the true target and its position is the true one.
The filter state error is calculated from the SN
measurement and filter estimates. The PSNF-m
performance is evaluated by comparing the SN
measurement with the filter estimate.

Fig. 11 shows the estimation error histories of X
and Y axes versus image frame numbers. They
represent deviations between the true target position
and the estimated position in X and Y coordinates. The
results indicate that the proposed filter structure has a
good target tracking performance as the errors are
bounded within 2 pixels throughout the entire
engagement.

Next, we carry out the simulation without template
updating to check whether the track score can be used
as the index of track initiation and maintenance or not.
Without template updating, target loss occurs some
frames later because the template still remains the
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Fig. 11. Estimate error histories.
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Fig. 12. The change of track score without template
update.

initial one notwithstanding the target shape and size
change. Fig. 12 represents the comparison result of the
track score change when the template is not updated
In various noisy environments.

Table 2. Comparison of run time of simulation.

=15 o =25
*TM- **Only TM-
PSNFm | TM | PSNFm | 0Py M
Run 21 sec 51 sec 33 sec 125 sec
Time

* TM-PSNFm : Proposed template matching algorithm combined
with PSNF-m
*¥*Only TM : Template matching algorithm in which dynamic
filter is not included.

Target loss occurs near 200 frames later in every
noisy environment, and the track score decreases. If

the track score g 1s less than the ., the track is

regarded as having lost the target. Consequently, it is
possible to decide whether to maintain the track or not
by using the track score.

We will compare the proposed algorithm with a
conventional template matching algorithm in which
the dynamic filter is not included.

In tracking by wusing the template matching
algorithm with which the dynamic filter is not
combined, it is a problem that the calculation time is
increased since matching is being carried out to the
whole area of the input image. Therefore, the pyramid
structure template matching method is widely used to
reduce the time of matching [9].

Table 2 shows the comparison of run time of the
proposed algorithm and the template matching
algorithm in which the dynamic filter is not included.
Two types of Gaussian noise whose o =15 and 25 are
added to the input image. The movie used in
simulation has a total of 298 frames and its frame rate
1s 30 frames/sec.

As one can see from Table 2, the template matching
algorithm without employing a dynamic filter
structure takes more simulation time than the
proposed algorithm. This 1s due to the fact that if the
template matching algorithm, unlike the proposed
algorithm, once fails in isolating the target, it tries to
find the target with a predetermined search pattern
inside an enlarged validation gate as a part of realizing
the pyramid structure.

Figs. 13 and 14 represent comparison of tracking
results at the final frame in case of o =15 and o =25.
(a) is the result of the algorithm proposed in this paper
and (b) 1s the result of the template matching
algorithm in which dynamic filter is not included.

The white boxes depicted in Fig. 13 and 14 indicate
the estimated target positions. The size of the box is
the same as the size of the template and its center
represents the target position. The results of Fig. 13
and 14 show that the proposed algorithm has a better
tracking performance than a conventional template
matching algorithm which does not employ a dynamic
filter structure.
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(a) TM-PSNFm. (b) Only TM.

Fig. 13. Target tracking result in case of o =15.

(a) TM-PSNFm.

(b) Only TM.

Fig. 14. Target tracking result in case of o =25.

5. CONCLUSIONS

A new image target tracking algorithm, combining
template matching with data association and dynamic
filter called PSNF-m, is proposed and simulation
results are presented in this paper.

The measurements of the filter are formed by the
template matching method widely used in image
tracking, and we show that the numbers of
measurements can be regulated by the GOCA-CFAR
algorithm. Also, we show that the target can be
tracked robustly by applying the PSNF-m algorithm,
which is the improved form of PSNF, in an
environment to which Gaussian noise is added, and
we show that the track score is available in initiating
the filter track and deciding whether to maintain the
track or not.

The result of comparing the proposed algorithm
with the template matching algorithm without
dynamic filter is also represented.
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