외판원 문제는 잘 알려진 NP-완전 문제로, 최적해(optimal value)를 구하는 다양한 알고리즘들이 개발되었다. 그러나 최악의 경우 지수 시간이 걸리므로 수행시간을 줄이는 다양한 방법들이 제안되고 있다. 최근접 휴리스틱 알고리즘은 최적해를 구하는 다른 알고리즘들에 비해 구조가 비교적 간단하다. 따라서 본 논문에서는 외판원 문제(Traveling Salesman Problem, TSP)의 최적해를 구할 수 있는 분기 함수(bounding function)를 적용한 분산 최근접 휴리스틱(nearest neighbor heuristic) 알고리즘을 PVM(Parallel Virtual Machine)에서 제공하는 마스터/슬래이브(master/slave) 모델을 사용하여 설계하고 구현하였다. 먼저 최적해를 찾는 수행 시간을 줄이기 위해 최적화 문제에서 좋은 성능을 보이는 분산 유전 알고리즘(distributed genetic algorithm)을 수행해 얻은 근사해(near optimal)를 초기 분기 함수로 사용한다. 특히 더욱 좋은 근사해를 구하고자 유전 연산자인 돌연변이를 새롭게 변형하여 적용하였다.
The COMS provides the LRIT/HRIT services to users. The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The requirement is important and critical enough to impact overall performance of the LHGS. HRIT image data is acquired from INRSM output receiving but LRIT image data is generated by sub-sampling HRIT image data in the LHGS. Specially, since LRIT is acquired from sub-sampled HRIT image data, LRIT processing spent more time. Besides, some of data loss for LRIT occurs since LRIT is compressed by lossy JPEG. Therefore, algorithm with the fastest processing speed and simplicity to be implemented should be selected to satisfy the requirement. Investigated sub-sampling algorithm for the LHGS were nearest neighbour algorithm, bilinear algorithm and bicubic algorithm. Nearest neighbour algorithm is selected for COMS LHGS considering the speed, simplicity and anti-aliasing corresponding to the guideline of user (KMA: Korea Meteorological Administration) to maintain the most cloud itself information in a view of meteorology. But the nearest neighbour algorithm is known as the worst performance. Therefore, it is studied in this paper that the selection of nearest neighbour algorithm for the LHGS is reasonable. First of all, characteristic of 3 sub-sampling algorithms is studied and compared. Then, several sub-sampling algorithm were applied to MTSAT-1R image data corresponding to COMS HRIT. Also, resized image was acquired from sub-sampled image with the identical sub-sampling algorithms applied to sub-sampling from HRIT to LRIT. And the difference between original image and resized image is compared. Besides, PSNR and MSE are calculated for each algorithm. This paper shows that it is appropriate to select nearest neighbour algorithm for COMS LHGS since sub-sampled image by nearest neighbour algorithm is little difference with that of other algorithms in quality performance from PSNR.
최근접 이웃 분류에서 입력 데이터의 클래스는 선택된 근접 학습 데이터들 중에서 가장 빈번한 클래스로 예측된다. 최근접분류 학습은 학습 단계가 없으나, 준비된 데이터가 모두 예측 분류에 참여하여 일반화 성능이 학습 데이터의 질에 의존된다. 그러므로 학습 데이터가 많아지면 높은 기억 장치 용량과 예측 분류 시 높은 계산 시간이 요구된다. 본 논문에서는 분리 경계면에 위치한 학습 데이터들로 구성된 새로운 학습 데이터를 생성시켜 분류 예측을 수행하는 프로토타입 선택 알고리즘을 제안한다. 제안하는 알고리즘에서는 분리 경계 영역에 위치한 데이터를 Tomek links와 거리를 이용하여 선별하며, 이미 선택된 데이터와 클래스와 거리 관계 분석을 이용하여 프로토타입 집합에 추가 여부를 결정한다. 실험에서 선택된 프로토타입의 수는 원래 학습 데이터에 비해 적은 수의 데이터 집합이 되어 최근접 분류의 적용 시 기억장소의 축소와 빠른 예측 시간을 제공할수 있다.
국방 분야에서 무인 차량의 주행로는 포장 도로 뿐만 아니라, 자주 다양한 변화를 갖는 야지의 비포장 도로 등이 포함된다. 이 무인 차량은 주로 험지나 오지에서 감시 및 정찰, 진지 방어 등을 수행하므로 자율 주행을 위해서 예측하지 못했던 다양한 주행로와 환경을 수시로 접하게 되며, 이에 따라 추가 학습이 필요하다. 본 논문에서는 'Forgetting' 문제를 피하면서 거리 비교와 Class 비교를 통해 빠르게 추가 학습이 가능하도록 Approximate Nearest Neighbor를 수정한 GPU 기반 Additional Learning Nearest Neighbor(ALNN) 알고리즘을 제안한다. 또 ALNN 알고리즘은 학습 데이터가 누적될수록 연산 속도가 저하되는 문제가 있고, 본 연구에서는 OpenGL Shading Language 기반의 GPU 병렬 처리를 사용하여 이를 해결하였다. ALNN 알고리즘은 기존의 학습 데이터에 영향을 주지 않으면서 빠르게 추가 학습이 가능하여, 빈번히 실시간으로 재학습이 필요한 국방 등의 분야에 활용될 수 있다.
This paper examines the mutlivariate nearest neighbor forecasting model which considers the volume traded as well as the stock price. The empirical results using the data from KOSPI indicate that the predictive power of the nearest neighbor model increases as the model becomes mutlivariate.
최근 위치 기반 서비스 기술에 관한 관심이 증가하면서, 시간에 따라 연속적으로 변하는 이동 객체에 관한 많은 연구들이 활발하게 수행되고 있다. 또한 이 시스템들이 자주 사용되는 질의 처리 기법 중 하나인 최근접(nearest neighbor, NN) 질의에 대한 연구도 다양하게 수행되고 있다. 그러나, 기존의 최근접 질의 처리 기법들은 질의와 객체가 이동하면 그들이 결과가 유효하지 않게 되므로, LBS를 위한 이동객체 관리 시스템에는 적합하지 않을 수 있다. 이러한 문제들을 해결하기 위해서 이동객체에 대한 정확하고 연속적인 질의 처리가 가능한 새로운 최 근접 질의 처리 기법을 제안하였으며, 이를 연속 궤적 최근접(continuous trajectory NN, CTNN) 질의라 부른다. 이 논문에서는 빠른 응답 시간을 얻기 위한 근사 연속 궤적 최근접(approximate CTNN, ACTNN) 질의 처리 기법과 정확한 최근접 탐색을 가능하게 하는 정확 연속 궤적 최근접(exact CTNN, ECTNN) 질의 처리 기법을 제안하였다. 우리는 여러 데이타 셋을 기반으로 실험을 하였으며, 실험결과는 제안된 ECTNN 기법의 경우 정확도는 상당히 높은 반면, 응답시간은 약간 낮은 성능을 보였다 또한 ACTNN 기법의 경우 정확도는 ECTNN 기법에 비해 낮은 반면, 응답시간은 높은 성능을 보였다. 제안된 기법들은 항해 시스템, 교통 통제 시스템, 물류정보 시스템 등 각종 위치 기반 서비스에 다양하게 사용될 수 있고, 특히 질의 객체와 데이타 객체가 모두 이동 점 객체이면서 이들의 궤적 정보를 미리 파악할 수 있는 경우에 가장 적합하다.
주성분 분석법을 사용한 물체 인식 기술은 영상의 조명 변화가 있을 때 인식률이 떨어지는 경향이 있다. 본 논문에서는 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터 베이스안의 물체인지 가려내는 새로운 PCA 분석방법을 사용한 물체 인식 기술을 제안하는데 그 목적이 있다. 그리고 개선된 k-nearest neighbor를 이용하여 물체 인식률을 향상 시켰다. 본 논문에서 제안된 물체 인식 알고리즘은 히스토그램 이퀄라이제이션과 미디언 필터를 이용하여 영상을 전처리하고 그것을 학습시켜서 물체 공간을 생성한다. 이때 히스토그램 이퀄라이제이션를 사용하여 히스토그램을 펼침으로써 조명 변화에 영향을 감소시키는 결과를 나았고, 이것은 기본적인 주성분 분석방법과 휘도치 정규화를 한 방법 등과 비교해 본 결과 조명 변화의 영향을 최소화하여 좋은 인식률을 유지할 수 있었다. 그리고 모델 영상내의 각각의 물체의 대표 값을 만든다. 그런 후 테스트영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 기존의 방식으로는 거리 계산오차가 많기 때문에 본 논문에서는 개선된 k-Nearest Neighbpr 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델 영상들을 인식의 단위로 이용하였다.
본 논문에서는 도로 네트워크 데이타베이스에서 정적 객체의 k-최근접 이웃 질의를 효율적으로 처리하기 위한 방안을 논의한다. 기존의 여러 기법들은 인덱스를 사용하지 못했는데, 이는 네트워크 거리가 순서화 된 거리함수가 아니며 삼각 부등식(triangular inequality) 성질 또한 만족하지 못하기 때문이다. 이러한 기존 기법들은 질의 처리 시 심각한 성능 저하의 문제를 가진다. 선계산된 네트워크 거리를 이용하는 또 다른 기법은 저장 공간의 오버헤드가 크다는 문제를 갖는다. 본 논문에서는 이러한 두 가지 문제점들을 동시에 해결하기 위하여 객체들 간의 네트워크 거리를 근사하여 객체들에 대한 인덱스를 구축하고, 이를 이용하여 k-최근접 이웃 질의를 처리하는 새로운 기법을 제안한다. 이를 위하여 본 논문에서는 먼저 네트워크 공간상의 객체를 유클리드 공간상으로 사상하기 위한 체계적인 방법을 제시한다. 특히, 삼각 부등식 성질을 만족시키기 위하여 평균 네트워크 거리라는 새로운 거리 개념을 제시하고, 유클리드 공간으로의 사상을 위하여 FastMap 기법을 사용한다. 다음으로, 평균 네트워크 거리와 FastMap을 사용하여 네트워크 공간상의 객체들로 인덱스를 구축하는 근사 색인 알고리즘을 제시한다. 또한, 구축한 인덱스를 사용하여 k-최근접 이웃 질의를 효과적으로 수행하는 알고리즘을 제안한다. 마지막으로, 실제 도로 네트워크를 이용한 다양한 실험을 통하여 제안된 기법의 우수성을 규명한다.
최근의 검색시스템에서는 두 객체집합에 대하여 가장 근접해 있는 K개의 객체 쌍을 찾는 질의가 자주 발생한다. 이러한 K개의 최대근접 객체 쌍을 찾는 질의를 효율적으로 처리하기 위해서는 객체의 순환적 위치속성이 고려되어야 한다. 본 논문은 순환도메인을 갖는 검색공간에서 서로 간에 가장 근접해 있는 K개의 객체쌍을 찾는 최적의 알고리즘을 제안하고 그 성능을 실험을 통하여 보인다. 제안한 알고리즘은 객체의 순환적 위치속성이 반영된 순환검색거리를 이용하여 K개의 최대 근접객체 쌍을 찾는 비용을 최적화한다.
영한 기계번역에서 영어 문장의 동사구를 한국어로 정확하게 번역하기 위해서는 일반적으로 타동사와 목적어의 연어 관계를 이용한다. 본 논문에서는 k-최근점(k-nearest neighbor) 학습을 연어 관계에 적용하여 동사 번역을 선택하는 알고리즘을 제시하였는데 k-최근점 학습을 위해서 워드넷에서의 의미거리를 정의하여 사용하였다. 그리고 실시간 번역 시스템에 사용될 사전을 구성하기 위하여, 말뭉치로부터 타동사-목적어 쌍을 추출하여 학습예제를 구축하고, 이 예제의 크기를 번역률과 연관시켜 최적화시키는 알고리즘을 제시한다. 본 논문에서는 위의 알고리즘들을 사용하여 동사 'build'의 번역률을 약 90%로 유지하면서 사전의 크기를 최적화하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.