• 제목/요약/키워드: Nearest

검색결과 1,793건 처리시간 0.032초

분기 함수를 적용한 분산 최근접 휴리스틱 (A Distributed Nearest Neighbor Heuristic with Bounding Function)

  • 김정숙
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권7호
    • /
    • pp.377-383
    • /
    • 2002
  • 외판원 문제는 잘 알려진 NP-완전 문제로, 최적해(optimal value)를 구하는 다양한 알고리즘들이 개발되었다. 그러나 최악의 경우 지수 시간이 걸리므로 수행시간을 줄이는 다양한 방법들이 제안되고 있다. 최근접 휴리스틱 알고리즘은 최적해를 구하는 다른 알고리즘들에 비해 구조가 비교적 간단하다. 따라서 본 논문에서는 외판원 문제(Traveling Salesman Problem, TSP)의 최적해를 구할 수 있는 분기 함수(bounding function)를 적용한 분산 최근접 휴리스틱(nearest neighbor heuristic) 알고리즘을 PVM(Parallel Virtual Machine)에서 제공하는 마스터/슬래이브(master/slave) 모델을 사용하여 설계하고 구현하였다. 먼저 최적해를 찾는 수행 시간을 줄이기 위해 최적화 문제에서 좋은 성능을 보이는 분산 유전 알고리즘(distributed genetic algorithm)을 수행해 얻은 근사해(near optimal)를 초기 분기 함수로 사용한다. 특히 더욱 좋은 근사해를 구하고자 유전 연산자인 돌연변이를 새롭게 변형하여 적용하였다.

COMPARISON OF SUB-SAMPLING ALGORITHM FOR LRIT IMAGE GENERATION

  • Bae, Hee-Jin;Ahn, Sang-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.109-113
    • /
    • 2007
  • The COMS provides the LRIT/HRIT services to users. The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The requirement is important and critical enough to impact overall performance of the LHGS. HRIT image data is acquired from INRSM output receiving but LRIT image data is generated by sub-sampling HRIT image data in the LHGS. Specially, since LRIT is acquired from sub-sampled HRIT image data, LRIT processing spent more time. Besides, some of data loss for LRIT occurs since LRIT is compressed by lossy JPEG. Therefore, algorithm with the fastest processing speed and simplicity to be implemented should be selected to satisfy the requirement. Investigated sub-sampling algorithm for the LHGS were nearest neighbour algorithm, bilinear algorithm and bicubic algorithm. Nearest neighbour algorithm is selected for COMS LHGS considering the speed, simplicity and anti-aliasing corresponding to the guideline of user (KMA: Korea Meteorological Administration) to maintain the most cloud itself information in a view of meteorology. But the nearest neighbour algorithm is known as the worst performance. Therefore, it is studied in this paper that the selection of nearest neighbour algorithm for the LHGS is reasonable. First of all, characteristic of 3 sub-sampling algorithms is studied and compared. Then, several sub-sampling algorithm were applied to MTSAT-1R image data corresponding to COMS HRIT. Also, resized image was acquired from sub-sampled image with the identical sub-sampling algorithms applied to sub-sampling from HRIT to LRIT. And the difference between original image and resized image is compared. Besides, PSNR and MSE are calculated for each algorithm. This paper shows that it is appropriate to select nearest neighbour algorithm for COMS LHGS since sub-sampled image by nearest neighbour algorithm is little difference with that of other algorithms in quality performance from PSNR.

  • PDF

프로토타입 선택을 이용한 최근접 분류 학습의 성능 개선 (Performance Improvement of Nearest-neighbor Classification Learning through Prototype Selections)

  • 황두성
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.53-60
    • /
    • 2012
  • 최근접 이웃 분류에서 입력 데이터의 클래스는 선택된 근접 학습 데이터들 중에서 가장 빈번한 클래스로 예측된다. 최근접분류 학습은 학습 단계가 없으나, 준비된 데이터가 모두 예측 분류에 참여하여 일반화 성능이 학습 데이터의 질에 의존된다. 그러므로 학습 데이터가 많아지면 높은 기억 장치 용량과 예측 분류 시 높은 계산 시간이 요구된다. 본 논문에서는 분리 경계면에 위치한 학습 데이터들로 구성된 새로운 학습 데이터를 생성시켜 분류 예측을 수행하는 프로토타입 선택 알고리즘을 제안한다. 제안하는 알고리즘에서는 분리 경계 영역에 위치한 데이터를 Tomek links와 거리를 이용하여 선별하며, 이미 선택된 데이터와 클래스와 거리 관계 분석을 이용하여 프로토타입 집합에 추가 여부를 결정한다. 실험에서 선택된 프로토타입의 수는 원래 학습 데이터에 비해 적은 수의 데이터 집합이 되어 최근접 분류의 적용 시 기억장소의 축소와 빠른 예측 시간을 제공할수 있다.

추가 학습이 빈번히 필요한 비포장도로에서 주행로 탐색에 적합한 GLSL 기반 ALNN Algorithm (GLSL based Additional Learning Nearest Neighbor Algorithm suitable for Locating Unpaved Road)

  • 구본우;김준겸;이은주
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.29-36
    • /
    • 2019
  • 국방 분야에서 무인 차량의 주행로는 포장 도로 뿐만 아니라, 자주 다양한 변화를 갖는 야지의 비포장 도로 등이 포함된다. 이 무인 차량은 주로 험지나 오지에서 감시 및 정찰, 진지 방어 등을 수행하므로 자율 주행을 위해서 예측하지 못했던 다양한 주행로와 환경을 수시로 접하게 되며, 이에 따라 추가 학습이 필요하다. 본 논문에서는 'Forgetting' 문제를 피하면서 거리 비교와 Class 비교를 통해 빠르게 추가 학습이 가능하도록 Approximate Nearest Neighbor를 수정한 GPU 기반 Additional Learning Nearest Neighbor(ALNN) 알고리즘을 제안한다. 또 ALNN 알고리즘은 학습 데이터가 누적될수록 연산 속도가 저하되는 문제가 있고, 본 연구에서는 OpenGL Shading Language 기반의 GPU 병렬 처리를 사용하여 이를 해결하였다. ALNN 알고리즘은 기존의 학습 데이터에 영향을 주지 않으면서 빠르게 추가 학습이 가능하여, 빈번히 실시간으로 재학습이 필요한 국방 등의 분야에 활용될 수 있다.

다변량 최근접 예측 모형: 거래량을 고려한 종합주가지수의 예측

  • 윤종훈;이회경
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 1998
  • This paper examines the mutlivariate nearest neighbor forecasting model which considers the volume traded as well as the stock price. The empirical results using the data from KOSPI indicate that the predictive power of the nearest neighbor model increases as the model becomes mutlivariate.

  • PDF

이동객체의 궤적에 대한 연속 최근접 질의 처리 (Continuous Nearest Neighbor Query Processing on Trajectory of Moving Objects)

  • 지정희;최보윤;김상호;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권5호
    • /
    • pp.492-504
    • /
    • 2004
  • 최근 위치 기반 서비스 기술에 관한 관심이 증가하면서, 시간에 따라 연속적으로 변하는 이동 객체에 관한 많은 연구들이 활발하게 수행되고 있다. 또한 이 시스템들이 자주 사용되는 질의 처리 기법 중 하나인 최근접(nearest neighbor, NN) 질의에 대한 연구도 다양하게 수행되고 있다. 그러나, 기존의 최근접 질의 처리 기법들은 질의와 객체가 이동하면 그들이 결과가 유효하지 않게 되므로, LBS를 위한 이동객체 관리 시스템에는 적합하지 않을 수 있다. 이러한 문제들을 해결하기 위해서 이동객체에 대한 정확하고 연속적인 질의 처리가 가능한 새로운 최 근접 질의 처리 기법을 제안하였으며, 이를 연속 궤적 최근접(continuous trajectory NN, CTNN) 질의라 부른다. 이 논문에서는 빠른 응답 시간을 얻기 위한 근사 연속 궤적 최근접(approximate CTNN, ACTNN) 질의 처리 기법과 정확한 최근접 탐색을 가능하게 하는 정확 연속 궤적 최근접(exact CTNN, ECTNN) 질의 처리 기법을 제안하였다. 우리는 여러 데이타 셋을 기반으로 실험을 하였으며, 실험결과는 제안된 ECTNN 기법의 경우 정확도는 상당히 높은 반면, 응답시간은 약간 낮은 성능을 보였다 또한 ACTNN 기법의 경우 정확도는 ECTNN 기법에 비해 낮은 반면, 응답시간은 높은 성능을 보였다. 제안된 기법들은 항해 시스템, 교통 통제 시스템, 물류정보 시스템 등 각종 위치 기반 서비스에 다양하게 사용될 수 있고, 특히 질의 객체와 데이타 객체가 모두 이동 점 객체이면서 이들의 궤적 정보를 미리 파악할 수 있는 경우에 가장 적합하다.

PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식 (Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor)

  • 정병수;김병기
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.53-62
    • /
    • 2006
  • 주성분 분석법을 사용한 물체 인식 기술은 영상의 조명 변화가 있을 때 인식률이 떨어지는 경향이 있다. 본 논문에서는 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터 베이스안의 물체인지 가려내는 새로운 PCA 분석방법을 사용한 물체 인식 기술을 제안하는데 그 목적이 있다. 그리고 개선된 k-nearest neighbor를 이용하여 물체 인식률을 향상 시켰다. 본 논문에서 제안된 물체 인식 알고리즘은 히스토그램 이퀄라이제이션과 미디언 필터를 이용하여 영상을 전처리하고 그것을 학습시켜서 물체 공간을 생성한다. 이때 히스토그램 이퀄라이제이션를 사용하여 히스토그램을 펼침으로써 조명 변화에 영향을 감소시키는 결과를 나았고, 이것은 기본적인 주성분 분석방법과 휘도치 정규화를 한 방법 등과 비교해 본 결과 조명 변화의 영향을 최소화하여 좋은 인식률을 유지할 수 있었다. 그리고 모델 영상내의 각각의 물체의 대표 값을 만든다. 그런 후 테스트영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 기존의 방식으로는 거리 계산오차가 많기 때문에 본 논문에서는 개선된 k-Nearest Neighbpr 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델 영상들을 인식의 단위로 이용하였다.

도로 네트워크 데이타베이스에서 근사 색인을 이용한 k-최근접 질의 처리 (k-Nearest Neighbor Querv Processing using Approximate Indexing in Road Network Databases)

  • 이상철;김상욱
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권5호
    • /
    • pp.447-458
    • /
    • 2008
  • 본 논문에서는 도로 네트워크 데이타베이스에서 정적 객체의 k-최근접 이웃 질의를 효율적으로 처리하기 위한 방안을 논의한다. 기존의 여러 기법들은 인덱스를 사용하지 못했는데, 이는 네트워크 거리가 순서화 된 거리함수가 아니며 삼각 부등식(triangular inequality) 성질 또한 만족하지 못하기 때문이다. 이러한 기존 기법들은 질의 처리 시 심각한 성능 저하의 문제를 가진다. 선계산된 네트워크 거리를 이용하는 또 다른 기법은 저장 공간의 오버헤드가 크다는 문제를 갖는다. 본 논문에서는 이러한 두 가지 문제점들을 동시에 해결하기 위하여 객체들 간의 네트워크 거리를 근사하여 객체들에 대한 인덱스를 구축하고, 이를 이용하여 k-최근접 이웃 질의를 처리하는 새로운 기법을 제안한다. 이를 위하여 본 논문에서는 먼저 네트워크 공간상의 객체를 유클리드 공간상으로 사상하기 위한 체계적인 방법을 제시한다. 특히, 삼각 부등식 성질을 만족시키기 위하여 평균 네트워크 거리라는 새로운 거리 개념을 제시하고, 유클리드 공간으로의 사상을 위하여 FastMap 기법을 사용한다. 다음으로, 평균 네트워크 거리와 FastMap을 사용하여 네트워크 공간상의 객체들로 인덱스를 구축하는 근사 색인 알고리즘을 제시한다. 또한, 구축한 인덱스를 사용하여 k-최근접 이웃 질의를 효과적으로 수행하는 알고리즘을 제안한다. 마지막으로, 실제 도로 네트워크를 이용한 다양한 실험을 통하여 제안된 기법의 우수성을 규명한다.

순환검색공간에서 K-최근접객체 쌍을 찾는 알고리즘에 관한 연구 (Algorithm for Finding K-Nearest Object Pairs in Circular Search Spaces)

  • 선휘준;김홍기
    • Spatial Information Research
    • /
    • 제20권2호
    • /
    • pp.165-172
    • /
    • 2012
  • 최근의 검색시스템에서는 두 객체집합에 대하여 가장 근접해 있는 K개의 객체 쌍을 찾는 질의가 자주 발생한다. 이러한 K개의 최대근접 객체 쌍을 찾는 질의를 효율적으로 처리하기 위해서는 객체의 순환적 위치속성이 고려되어야 한다. 본 논문은 순환도메인을 갖는 검색공간에서 서로 간에 가장 근접해 있는 K개의 객체쌍을 찾는 최적의 알고리즘을 제안하고 그 성능을 실험을 통하여 보인다. 제안한 알고리즘은 객체의 순환적 위치속성이 반영된 순환검색거리를 이용하여 K개의 최대 근접객체 쌍을 찾는 비용을 최적화한다.

k-최근점 학습에 기반한 타동사-목적어 연어 사전의 최적화 (Optimization of Transitive Verb-Objective Collocation Dictionary based on k-nearest Neighbor Learning)

  • 김유섭;장병탁;김영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권3호
    • /
    • pp.302-313
    • /
    • 2000
  • 영한 기계번역에서 영어 문장의 동사구를 한국어로 정확하게 번역하기 위해서는 일반적으로 타동사와 목적어의 연어 관계를 이용한다. 본 논문에서는 k-최근점(k-nearest neighbor) 학습을 연어 관계에 적용하여 동사 번역을 선택하는 알고리즘을 제시하였는데 k-최근점 학습을 위해서 워드넷에서의 의미거리를 정의하여 사용하였다. 그리고 실시간 번역 시스템에 사용될 사전을 구성하기 위하여, 말뭉치로부터 타동사-목적어 쌍을 추출하여 학습예제를 구축하고, 이 예제의 크기를 번역률과 연관시켜 최적화시키는 알고리즘을 제시한다. 본 논문에서는 위의 알고리즘들을 사용하여 동사 'build'의 번역률을 약 90%로 유지하면서 사전의 크기를 최적화하였다.

  • PDF