Continuous Nearest Neighbor Query Processing on Trajectory of Moving Objects

이동객체의 궤적에 대한 연속 최근접 질의 처리

  • 지정희 (충북대학교 전자계산학과) ;
  • 최보윤 (충북대학교 전자계산학과) ;
  • 김상호 (충북대학교 연구원) ;
  • 류근호 (충북대학교 전기전자 및 컴퓨터공학부)
  • Published : 2004.10.01

Abstract

Recently, as growing of interest for LBS(location-based services) techniques, lots of works on moving objects that continuously change their information over time, have been performed briskly. Also, researches for NN(nearest neighbor) query which has often been used in LBS, are progressed variously However, the results of conventional NN Query processing techniques may be invalidated as the query and data objects move. Therefore, they are usually meaningless in moving object management system such as LBS. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet accurate and continuous query processing for moving objects. Our techniques include an Approximate CTNN(ACTNN) technique, which has quick response time, and an Exact CTNN(ECTNN) technique, which makes it possible to search nearest neighbor objects accurately. In order to evaluate the proposed techniques, we experimented with various datasets. Experimental results showed that the ECTNN technique has high accuracy, but has a little low performance for response time. Also the ACTNN technique has low accuracy comparing with the ECTNN, but has quick response time The proposed techniques can be applied to navigation system, traffic control system, distribution information system, etc., and specially are most suitable when both data and query are moving objects and when we already know their trajectory.

최근 위치 기반 서비스 기술에 관한 관심이 증가하면서, 시간에 따라 연속적으로 변하는 이동 객체에 관한 많은 연구들이 활발하게 수행되고 있다. 또한 이 시스템들이 자주 사용되는 질의 처리 기법 중 하나인 최근접(nearest neighbor, NN) 질의에 대한 연구도 다양하게 수행되고 있다. 그러나, 기존의 최근접 질의 처리 기법들은 질의와 객체가 이동하면 그들이 결과가 유효하지 않게 되므로, LBS를 위한 이동객체 관리 시스템에는 적합하지 않을 수 있다. 이러한 문제들을 해결하기 위해서 이동객체에 대한 정확하고 연속적인 질의 처리가 가능한 새로운 최 근접 질의 처리 기법을 제안하였으며, 이를 연속 궤적 최근접(continuous trajectory NN, CTNN) 질의라 부른다. 이 논문에서는 빠른 응답 시간을 얻기 위한 근사 연속 궤적 최근접(approximate CTNN, ACTNN) 질의 처리 기법과 정확한 최근접 탐색을 가능하게 하는 정확 연속 궤적 최근접(exact CTNN, ECTNN) 질의 처리 기법을 제안하였다. 우리는 여러 데이타 셋을 기반으로 실험을 하였으며, 실험결과는 제안된 ECTNN 기법의 경우 정확도는 상당히 높은 반면, 응답시간은 약간 낮은 성능을 보였다 또한 ACTNN 기법의 경우 정확도는 ECTNN 기법에 비해 낮은 반면, 응답시간은 높은 성능을 보였다. 제안된 기법들은 항해 시스템, 교통 통제 시스템, 물류정보 시스템 등 각종 위치 기반 서비스에 다양하게 사용될 수 있고, 특히 질의 객체와 데이타 객체가 모두 이동 점 객체이면서 이들의 궤적 정보를 미리 파악할 수 있는 경우에 가장 적합하다.

Keywords

References

  1. A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, Son Dao, 'Modeling and Querying Moving Objects,' ICDE 1997, pp.422-432
  2. Flip Korn, Nikolas Sidiropoulos, Christos Faloutsos, Eliot Siegel, Zenon Protopapas, 'Fast Nearest Neighbor Search in Medical Image Databases,' VLDB 1996, pp.215-226
  3. Like Gao, Zhengrong Yao, Xiaoyang Sean Wang, 'Evaluating Continuous Nearest Neighbor Queries for Streaming Time Series via Pre-Fetching,' CIKM 2002, pp.485-492 https://doi.org/10.1145/584792.584872
  4. Nick Roussopoulos, Stephen Kelley, Fredeic Vincent, 'Nearest Neighbor Queries,' SIGMOD Conference 1995, pp.71-79
  5. Apostolos Papadopoulos, Yannis Manolopoulos, 'Performance of Nearest Neighbor Queries in R-tree,' ICDT 1997, pp.394-408
  6. Stefan Berchtold, Bernhard Ertl, Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl, 'Fast Nearest Neighbor Search in High-Dimensional Space,' ICDE 1998, pp.209-218
  7. Cui Yu, Beng Chin Ooi, Kian-Lee Tan, H.V. Jagadish, 'Indexing the Distance : An Efficient Method to KNN Processing,' VLDB 2001, pp.421-430
  8. Danxhou Liu, Ee-Peng Lim, We Keong Ng, 'Efficient k Nearest Neighbor Queries on Remote Spatial Database Using Range Estimation,' SSDBM 2002, pp.121-130
  9. David A. White, Ramesh Jain, 'Similarity Indexing with the SS-tree,' ICDE 1996, pp.516-523 https://doi.org/10.1109/ICDE.1996.492202
  10. N.Katayama & S.Satoh, 'The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries,' Proc. ACM SIGMOD Conf, Tucson, Arizona, May 1997 https://doi.org/10.1145/253260.253347
  11. Suni Araym, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Angela Y. Wu, 'An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions,' JACM 1998, pp.891-923 https://doi.org/10.1145/293347.293348
  12. Piotr Indyk, Rajeev Motwani, 'Approximate Nearest Neighbors : Towards Removing the Curse of Dimensionality,' STOC 1998, pp.604-613 https://doi.org/10.1145/276698.276876
  13. King-Ip, Congjun Yang, 'The ANN-tree : An Index for Efficient Approximate Nearest Neighbor Search,' DASFAA 2001, pp.174-181 https://doi.org/10.1109/DASFAA.2001.916376
  14. Stephan Volmer, 'Fast Approximate Nearest Neighbor Queries in Metric Feature Spaces by Buoy-Indexing,' VISUAL 2002, pp.36-49
  15. George Kollios, Dimitrios Gunopulos, Vassilis J. Tsotras, 'Nearest Neighbor Queries in a Mobile Environment,' Spatio-Tempolra Database Management 1999, pp.119-134
  16. Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, Simonas Saltenis, 'Nearest Neighbor and Reverse Nearest Neighbor Queries for Moving Objects,' IDEAS 2002, pp.44-53 https://doi.org/10.1109/IDEAS.2002.1029655
  17. Simonas Saltenis, Christian S. Jensen, 'Indexing the Position of Continuously Moving Object,' SIGMOD Conference 2000, pp.331-342
  18. Yufei Tao, Dimitris Papadias, 'Spatial Queries in Dynamic Environments,' TODS 2003 https://doi.org/10.1145/777943.777944
  19. Jose Moreira, Cristina Ribeiro, Jean-Marc Saglio, 'Representation and Manipulation of Moving Points: An Extended Data Model for Location Estimation,' Cartography and Geographic Information Systems(CaGIS), ACSM, Vol.26, No.2, April 1999
  20. Kriengkrai Porkaew, Iosif Lazaridis, Sharad Mehrotra, 'Querying Mobile Objects in Spatio-Temporal Databases,' SSTD 2001, pp.59-78
  21. M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry Algorithms and Applications. Springer-Verlag, March 1997
  22. Yannis Theodoridis, Mario A. Nascimento, 'Generating Spatiotemporal Datasets on the WWW,' SIGMOD 2000, pp.39-43