• Title/Summary/Keyword: Navigation speed

Search Result 888, Processing Time 0.026 seconds

The Characteristics of Driving Behavior and Eye-Movement According to Driving Speed and Navigation-Position while Operation of the Navigation in Driving (주행 중 네비게이션 조작 상황에서 주행속도와 네비게이션 위치에 따른 운전행동 및 안구운동 특성)

  • Hong, Seung-Hee;Kang, Jin-Kyu;Kim, Bo-Seong;Min, Cheol-Kee;Chung, Soon-Cheol;Doi, Shun'ich;Min, Byung-Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.35-41
    • /
    • 2011
  • The purpose of this study was to examine drivers' driving behaviors and eye-movements according to driving speed and navigation- position while operation of the navigation in driving. For this purpose, two driving conditions (low-speed and high-speed) and two navigation-positions (top and bottom location of the center console) were set. Drivers' driving behaviors (speed, speed variation, coefficient of variation, and the number of collisions) and eye-movements (overall eye pattern, the average scanning time of navigation, and the number of gaze-out on the road for more 2 seconds) were measured. As a result, when the navigation was located at the bottom of the console, difficulties of lateral control was appeared in low-speed driving condition, and the that of longitudinal control was appeared in high-speed driving condition. In addition, above situation made the drivers' scanning times of navigation long, increased the number of gaze-out on the road for more 2 seconds, and made overall eye pattern monotonous. These results could be interpreted that the manipulation of the navigation at the bottom of console cause reduced attention capacity due to the cognitive load.

Design St Implementation of a High-Speed Navigation Computer for Strapdown INS (스트랩다운 관성항법시스템 고속 항법컴퓨터 설계와 구현)

  • 김광진;최창수;이태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.29-29
    • /
    • 2000
  • This paper describes the design and implementation of a high-speed navigation computer to achieve precision navigation performance with Strapdown INS. The navigation computer inputs are velocity and angular increment data from the ISA at the signal of the 2404Hz interrupt and performs the removal of gyro block motion and the compensation of high dynamic errors at the 200Hz. For high-speed and high-accuracy, the computer consists of the 68040 micro-processor, 128k Memories, FPGAs, and so on. We show that the computer satisfies the required performance by In-Run navigation tests.

  • PDF

The assessment of Safe Navigation Regarding Hydrodynamic forces between ships in Restricted Waterways

  • Lee, Chun-Ki;Yoon, Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.89-93
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vessels in restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transverse distance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the bigger one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

  • PDF

The assessment of Safe Navigation Regarding Hydrodynamic forces between ships in Restricted Waterways

  • Lee, Chun-Ki;Yun, Jong-Hwui;Yoon, Jeom-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.143-149
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vesselsin restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transversedistance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the higher one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

  • PDF

A Study on Proper Minimum Navigation Speed Control in the Korean Ports (우리나라 항만에서의 항행 최저속력 규제에 관한 연구)

  • Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Navigation speed control is an important factor to improve the traffic safety, it is only researched about maximum speed control until now. Recently, there are lots of the low speed vessels including towing boats, carry heavy shipbuilding blocks in the Korean waters, so the danger degree of navigating vessels was increasing more and more. This paper analysed the effectiveness of minimum speed control with the operation burden's decrease, and it proposed the proper the minimum navigation speed of each traffic volume. Main results of this research are as follows. (1) in the case of 5 ships/hour, minimum speed control is effective if the lowest speed is fixed more than 5kts. (2) in the case of more than 10 ships/hour, speed control is some effective if the lowest speed is established 7kts. (3) But, when there are many ships in the waters, minimum speed control is not effective because distances between ships become near and ships navigate for a long time by a lot of ship having a few difference of relative speed.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

A Study on the Ship's Speed Control and Ship Handling at Myeongnayang Waterway (명량수도 해역에서 항해속력 규제와 선박운용에 관한 연구)

  • Kim, Deug-Bong;Jeong, Jae-Yong;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This study provided safe sailing speed and appropriate passing time to areas of known strong current water to prevent marine accident of the ships. To the interpretation of these data which target Myeongnyang waterway, AIS data of the ship was collected from $12^{th}$ July to $15^{th}$ July 2010 and site environment was investigated on $4^{th}$ September 2010. On the basis of the collected data, the 'Minimum Navigation Speed' and 'Optimum Navigation Speed' were calculated. It has also considered the 'Spare control force' or allowance and the 'Respond Rudder Angle' for each tidal current speed. Additionally, it suggested the safe passing time to strong current area by analyzing tidal level and tidal current speed. The conclusion of the research are as follows : (1) If the flow rate is greater than 4.4 kn, it is difficult for the model ship to control herself by her own steering power and to cope with tidal current pressure force and yaw moment caused by the tidal current.. (2) The minimum navigation speed should be over 2.3 times the tidal current and the optimum navigation speed should be over 4.0 times the tidal current. (3) When spring tide, the optimum passing time at Myeongnyang waterway is between 30 minutes to 1 hour before the time of high/low water, and at 5 hours after high/low water, passing of ships should be avoided because it is time when the flow rate is over 4 kn.

A study on the Manoeuvring Motion Under the Condition of External Forces in Restricted Waterways

  • Lee Chun Ki;Kang Il Kwon;Yoon Jeom Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.123-126
    • /
    • 2003
  • In the present paper, the analysis is on the safe navigation between ships moving each other in restricted waterways under the external force, such as wind or current The numerical simulation of manoeuvring motion was carried out to propose an appropriate safe speed and distance between ships, which is required to avoid marine disasters from the viewpoint of marine safety. From the inspection q this investigation, it indicates the following result In case of proximal navigation between ships under the wind and current, the low-speed vessel is potentially hazardous because the rudder force if low-speed vessel needed for steady-state course-keeping is not sufficient, compared to the high-speed vessel The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.

  • PDF

Efficient navigation of mobile robot based on the robot's experience in human co-existing environment

  • Choi, Jae-Sik;Chung, Woo-Jin;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2024-2029
    • /
    • 2005
  • In this paper, it is shown how a mobile robot can navigate with high speed in dynamic real environment. In order to achieve high speed and safe navigation, a robot collects environmental information. A robot empirically memorizes locations of high risk due to the abrupt appearance of dynamic obstacles. After collecting sufficient data, a robot navigates in high speed in safe regions. This fact implies that the robot accumulates location dependent environmental information and the robot exploits its experiences in order to improve its navigation performance. This paper proposes a computational scheme how a robot can distinguish regions of high risk. Then, we focus on velocity control in order to achieve high speed navigation. The proposed scheme is experimentally tested in real office building. The experimental results clearly show that the proposed scheme is useful for improving a performance of autonomous navigation. Although the scope of this paper is limited to the velocity control in order to deal with unexpected obstacles, this paper points out a new direction towards the intelligent behavior control of autonomous robots based on the robot's experience.

  • PDF

A Study on the Validity of Proper Maximum Navigation Speed in a Straight Waterway (직전항로에서의 적정 최대속력에 대한 검토.연구)

  • Park Young-Soo;Jong Jae-Yong;Park Jin-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.139-144
    • /
    • 2006
  • Recently, ships' average navigation speed become faster than before because of the increasing of high-speeds vessel including container ships and passenger-ferries. So, it is considered that the speed limit in the navigation channel in Korea isn't proper for vessel management in these days. Also, there is rare paper studies about the speed limit quantitatively and numerically, especially the speed limit is discussing continuously, as abrogation of Incheon Port's speed limit and alleviation of Gwang-yang Port's speed limit according to the requests by the navigating mariners. Consequently this paper deals with the effectiveness of speed limits using the Environmental Stress Model, after replay of the navigation traffic flow in the straight waterway using marine traffic flow simulation technique.

  • PDF