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1. INTRODUCTION 

 
Recently, “dependability” receives much attention in the 

field of autonomous service robotic applications. From the 
viewpoint of autonomous navigation, safe navigation in 
human-coexisting environment is an essential problem to be 
solved. On the other hand, high speed navigation is preferable 
in order to achieve service efficiencies. There are fundamental 
difficulties when we want to increase the speed of a mobile 
robot. Such problems can be classified into three categories as 
follows: 

1) Dynamic and mechanical limitations. 
2) Control and computational limitations. 
3) Unexpected dynamic changes of environment. 
 
The first problem implies that there might take place wheel 

slippage or rollover of the robot when excessive speed is 
applied when the robot makes a sharp cornering or an 
emergency stop. This problem can be solved by appropriate 
modeling of a mobile robot dynamics. In practical applications, 
the first problem is rarely considered, because other problems 
provide more strict limitation on the maximum speed of the 
mobile robot. 

The second problem can be interpreted as a real-time 
obstacle avoidance problem. A speed of navigation can be 
limited by sensor capabilities to detect obstacles, sensing 
speed, computational cost of the obstacle avoidance 
algorithms and motion control response. There have been a lot 
of research activities for the dynamic obstacle avoidance 
problem. A mobile robot can navigate real environment 
without collision by adopting some useful developed 
technologies. Owing to the fast computational speed of recent 
CPU’s, a robot’s motion can be controlled with acceptably 
high update rate. 

Our major scope in this paper is to solve the third problem 
addressed above. In order to deal with unexpected dynamic 
changes of the environment, a robot should utilize its own 
experiences. Humans fully exploit their experiences in real 
environment in many cases. Suppose that a person is walking 
in corridor. He might walk fast when there is no obstacle. He 
might reduce the walking speed when he expects that another 
person possibly burst into the corridor through the door from a 

room. Alternatively, a person might reduce the speed when he 
already knows that a part of the floor is slippery. This fact 
implies that a person possibly changes walking speed even 
though there are no visible obstacles. In the presented case, a 
person should have a location dependant, preliminary 
knowledge of the environment for control of a walking speed.  

So far, we have proposed the behavior selection criteria 
using Generalized Stochastic Petri Nets in [1], a range sensor 
based integrated navigation strategy in [2], and practical 
navigation experiences of the museum guide robot in [3]. 
From our experiences on autonomous navigation, we 
recognized that it is extremely significant environment.  A lot 
of advantages can be obtained by empirical navigation. This 
paper focuses on high speed navigation without collision with 
unexpected dynamic obstacles in corridor environment. 

The human co-existing environment has the two types of 
dynamic obstacles to cope with. The first is the expected 
dynamic obstacle which can be detected by sensors. The 
second is unexpected dynamic obstacles that abruptly emerge 
to the robots. Although current state-of-the-art solutions 
solved the problem of the safe and fast navigation against the 
expected dynamic obstacle, it is still the difficult to be solved 
for the case of the unexpected dynamic obstacle. The objective 
is to achieve safe and fast navigation for the both cases of 
dynamic obstacle. 

Because the dynamic obstacle avoidance is one of the main 
issues for the robot researcher, there are many previous 
research activities about controlling robot behavior avoiding 
the obstacles. The approaches can be classified into three 
categories, one is a model based path planning. Another is a 
sensor-based reactive motion control. The other is a hybrid 
approach which combines two schemes. 

A model based path planning uses models of the world and 
robot to compute a path for the robot to reach its goal. One of 
the widely used path planning schemes is to use the potential 
field in [4]. Although the motion of the robot can be obtained 
in a quite simple way, it is difficult to use the original potential 
field due to a local minima problem. Konolige proposed a 
gradient method in [5]. The gradient method provides a global 
optimal solution for the path planning problem. However,it is 
still difficult to be applied to dynamic obstacle avoidance 
problem, because those computational schemes assume a 
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static or quasi-static environment. Furthermore, complete 
environmental model should be given for the model based 
path planner. In order to over come such limitations, sensor 
based reactive control strategy can be adopted. 

In the sensor-based robot control, the motion of robot is 
reactively controlled based on sensory information such that 
obstacles are avoided while the robot continues to move 
towards the goal. Vector field histogram approach [6], in the 
obstacle-free direction is chosen based on the sensor data. The 
dynamic window approaches [7] suggested that the optimal 
velocity of robot is computed using the admissible velocity 
space. The search space is the set of tuples (v,ω) of 
translational velocities v and rotational velocities ω of the 
robot. The admissible velocity space is the collection of proper 
velocities which satisfy the kinematic and dynamic constraints 
of robot. However, it is not guaranteed that the robot reaches 
its desired goal when only a sensor based reactive control is 
applied. 

A hybrid approach is a combination of the model based 
planning and a sensor based reactive control It is possible to 
achieve advantages of both method, for example, a goal 
oriented dynamic obstacle avoidance problem can be solved. 
The elastic band [8] regards the planned path as deformable 
one. With the virtual bubble on sensory data, it bent the 
original path toward obstacle-free path. The other kind of 
hybrid approaches adapts path planning based on the 
sensor-based robot control. The global dynamic window [9] 
solved the problem of local minima in the dynamic window 
approaches. With the real-time global path planning algorithm, 
the approaches ensure that the robot is guided to goal position 
by the local admissible velocities.  

Despite much progress in the obstacle avoidance researches, 
the most of researches assumed only the expected dynamic 
obstacle. We focus on the both the expected and unexpected 
dynamic obstacle. To detect the location-dependent 
unexpected dynamic obstacle, we adapt the human 
cognitive-motivational model [10] that recognizes the afraid of 
external environment. Based on the conceptual model, we 
specified the quantitative measure of uncertainty and risk as a 
cognitive-motivational term, ‘afraid’. During the autonomous 
navigation, the robot gathers the data of risky. Thereafter, the 
robot learns the information of dangerous area from the 
gathered data. Because the process is the supervised learning, 
the solution of computational learning theory [11] [12] is 
congruent with this problem. In the Empirical Risk 
Minimization approach, we use square-loss function and 
Gaussian kernel for achieving afraid-expect function. Finally, 
we control the robot with the experienced information for the 
location, kinematics constraints of robot and dynamic 
information of environment. The experimental result showed 
that the safe and fast navigation is successfully conducted. 

 
2. COLLISION-FREE HIGH SPEED 

NAVIGATION 
 
2.1 Problem statement 

This research is a part of intelligent behavior control using 
experience based location information. As a specific subject, 
we selected autonomous navigation of service robot that 
navigates along the corridor in the building. We conducted 
following procedure in this research.  

 
i) The robot repeatedly navigates the corridor with slow 

speed navigation for gathering environmental 
information including obstacle. 

ii) The robot gathers location-dependent information. 

The special locations, in which high speed navigation 
is impeded by abruptly appeared obstacle, are 
accumulated. 

iii) Based on the acquired information, the robot could 
conduct high speed navigation in the safe area. 

 
In this environment, robot uses a couple of laser range 

finders. Abrupt appeared obstacles were people who burst into 
corridor from the door. For reducing the complexity of control 
logic, we made the robot navigate along the center of corridor 
and behavior control was confined to the problem of velocity 
control. Because slippage was occurred during repeated 
navigation task, we use the probabilistic map-matching 
scheme based on Monte Carlo localizer [13] [14] and a grid 
map for environmental representation.  

 
2.2 The collision condition and collision area 

As the car stopping model, the robot has a stopping model 
that is composed of delay distance and breaking distance. The 
delay distance is the distance that the robot moves during the 
time between the emergence of obstacle and the detection of 
obstacle. Breaking distance is the distance that robot move 
from the breaking action to totally stop. The stopping distance 
is the sum of two distances.  

 
Based on the dynamic and kinematics constraints, the 

stopping distance is defined as the Eqs. (1)-(3).  
 

)()()( tdisttdisttdist breakdelaystop +=     (1) 

)()( tveltimetdist fdelaydelay ⋅=       (2) 

)(
2
1)( 2 tveltdist fbreak ⋅⋅= α        (3) 

 
Where diststop(t), distsense(t) and distbreak(t) respectively indicate 
a stopping distance, a sensing distance and a breaking distance 
at time t. The velf(t)  is forward velocity of time t. The timesens 
is the constant maximum delay of detecting dynamic obstacle. 
The α is the maximum acceleration constant. 
 
 Based on the the Eqs. (1)-(3), we can state the collision 
condition in high speed navigation. 
 

)()()( tdisttxtx stopobstaclerobot <−      (4) 
Where xrobot(t) and xobstacle(t) is the location of robot and the 
location of obstacle along the corridor. 
 
 The collision area is gray area within a dotted line, as shown 
in Fig. 1. Based on the constraints in Eq. (4), the high speed 
robot cannot avoid the obstacles in case the obstacle is located 
in the collision area.  

 

Fig. 1 Collision area of high speed navigation 
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Thereafter, it is clear that the collision area increase in 
proportion to accelerated speed.  
 
2.3 Dynamic obstacle detection 
Despite collision area, the robot avoid expected dynamic 

obstacle. Because the distance of a laser range finder is 8 m, 
which is longer than the stopping distance, the robot avoid the 
detected dynamic obstacle by executing stopping behavior at 
the static trajectory. We can detect the expected dynamic 
obstacle using the Fig. 2, Eqs. (5)-(6).  

 

 

Fig. 2 Stopping distance and marginal distance 
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where the Obs is the set of detected obstacles and obs is an 
element of Obs. The distobs(t) is the distance from the robot to 
a specific obstacle, obs. The obscur(t) is an indicating factor 
which is changed to 1 from 0 when any dynamic obstacle 
appears within the collision area. The β is marginal distance 
that can be detected from sensor data.  
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Where the obspredict(t) is an indicating factor which is changed 
from 1 to 0 when the appearance of dynamic obstacle is 
expected based on the previous footstep steps of observation, 
obscur(·). 

 
Through this logic, we can computationally expect the 

appearance of dynamic obstacle based on previous 
observations. The remaining problem is to detect the abruptly 
appeared obstacle. 

 
2.4 Abruptly appeared obstacle detection based on afraid 
model 
 In the cognitive researches [10], it was shown that the human 
behavior directly depends on the afraid level, Fig. 3. The 
afraid level is high when the real input of sensory organ is not 
congruent with the expected input. With the high level of 
afraid, human especially pay attention to current environment 
for overcoming the dangerous factors. The high level induces 
cautious behavior such as slow movement and even stops. The 
conceptual description can be written as a Eq (7). However, 
the cognitive based model is ambiguous, because there is no 
quantitative measure to specify the levels of afraid. 

 

Fig. 3 Cognitive-motivational afraid model 

AEAfr −=              (7) 
Where Afr is the level of afraid; E is expected environment 
condition; and A is actual environment condition. 

 

 
Fig. 4 Calculating environmental condition 

We model the afraid level with a quantitative measure of 
uncertainty and risk. We define the collision possible area as a 
quantitative measure of environmental condition. In the area, 
collision area and marginal area are included. The moving 
obstacle within stopping distance divides the collision area 
into two distinct area; blocked area and non-blocked area. In 
the Fig. 4, ‘D’ is a blocked area and ‘A’, ‘B’ and ‘C’ are 
non-blocked area. We adapt the non-blocked area as a 
quantitative measure of environmental condition. The 
non-blocked area is good indication factor for the current 
environmental condition. The abruptly appeared obstacles, 
which impede high speed navigation, induce abrupt change of 
the measure. Thus, the area is an appropriate measure for 
afraid model. We calculated the actual environment condition 
using laser range sensor data, Eqs (8)-(9) and Fig. 5. 
Concurrently, we calculate the expected environment 
condition using map data and current position. In the 
calculation, expected laser range sensor is used instead of 
actual sensor data. Thereafter, binary afraid level is decided 
from the difference of the two measures, Eqs (10)-(11). When 
the robot confronts with the abruptly appeared obstacle, the 
Afr(t) become 1.  
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Fig. 5 Calculating reach distance 
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where Aarea(t) indicate the non-blocked area  
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where Earea(t) indicate the expected non-blocked area  
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where Afr(t) is binary afraid level and diffthreshold is the constant 
for deciding afraid based on the measure. 
 
2.5 Information accumulation and generalization 
Under the favor of binary indication of afraid, we accumulate 

the location dependent information at each cell, Eq (12) 
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where the Obs is the set of detected obstacles and Afrcell(x,y,t) 
is the accumulated afraid information in the cell (x,y) at time t.  
 
Because of the incompleteness of the accumulated 

information, we conducted generalization procedure. That is, 
we adopt the smoothing technique. However, we focus on the 
procedure in the perspective of supervised learning. It is 
because we should estimate the emergence of unexpected 
dynamic obstacle from the experiences of emergences in 
specific locations. That is, the key is learning from examples. 
At the computational learning theory [8], conventional method 
is using Empirical Risk Minimization (EMR). In this 
perspective, our research subject is learnable. It is because that 
we can hypothesize Reproducing Kernel Hilbert Space 
(RKHS). We used Gaussian kernel, because location 
information is relevant to close location. As a loss function, 
we chose the square lose due to effective and simple property. 
 
2.6 Velocity control 
Upon the sensor based behavior control, we adapt 

accumulated location information. When the robot navigates 
in the safe area, the robot is controlled by the normal behavior 
control. The velocity of robot is controlled by not only the 

ordinary behavior control but also the afraid indicator in the 
unsafe area, Eqs (13)-(14) .  
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where Velafraid(t) is the velocity that is regulated by the afraid 
indicator. Velmax and Velsafe is respectively the constant of 
maximum velocity and safe velocity. x,y is the current position 
of robot and t is time. 
 

))(),(min()( tVeltVeltVel afraidfresult =        (14) 
where Velf(t) is the output forward velocity of the sensor based 
behavior control. Velresult(t) is regulated result velocity. 
 

3. EXPRERIMENTS AND RESULTS 
 
3.1 Physical environment 
 

 

Fig. 6 Infotainment robot platform 

The proposed approach has been implemented and tested 
on the Infotainment Robot Platform ver. 1 mobile base by 
Dasa Technologies, Inc. shown in Fig. 6. This base moves at 
translational velocities of up to 1.0 m/s and accelerations of up 
to 1.0 m/s2 with two-wheel differential drive. It is equipped 
with two SICK laser range finders with a field of view 180º 
and an accuracy of up to 1 cm. Using the on-board 2.2 GHz 
CPU and 1 GB memory PC, servo rates of 5 Hz are achieved 
for behavior control. At the platform, Linux and RTAI support 
realtime task capability. We use the shared-memory 
architecture for exchange the date between realtime sensor 
reading module and any other internal modules. The rate of 
sensor reading, 5 Hz, is bounded by RS232C communication 
bandwidth. Moreover, we use the probabilistic map-matching 
scheme based on Monte Carlo localizer [12]. Due to the 
computational cost, the update rate of localizer is confined in 
0.5 Hz. 

 
3.2 Corridor navigation 

 
Fig. 7 Corridor environment and a grid map 
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Because the major scope of this research is to obtain the 

adaptive behavior of robot, we can simplify the navigation 
task without the loss of generality. Thus, we consider corridor 
environment and its 30 m × 10 m size grid map, Fig 7., in 
which the robot navigates through the center. The robot 
repeatedly conducted autonomous navigation for gathering 
location dependent information at the environment. 

We model normal pedestrians- expected dynamic obstacle- 
who navigate along the corridor at 1.6 m/s and up to 2.0 m/s. 
We suppose the chance comers who emerge from the door at 
0.8 m/s. We also assume that no dynamic obstacle 
intentionally collide with the robot. Thus, proper velocity 
control prevent the robot from collide with any dynamic 
obstacle. Along the 1-dimensional axis, the robot slowly 
navigates at 0.2 m/s for gathering location information. When 
the robot encounters any dynamic obstacles, the robot easily 
stops. After the location learning, the robot quickly moves at 
0.8 m/s in the safe area. 

 
3.3 Robot constraints  

We experimentally measure the stopping distances and 
stopping times at 0.2 m/s, 0.5 m/s and 0.8 m/s, Table 1.  

 
Table 1 The maximum stopping distances and stopping times 

per velocities. 
 

 Stopping 
distance 

Stopping 
time 

0.8m/s 1.01m 1.7 sec 

0.5m/s 0.58m 1.4 sec 
0.2m/s 0.20m 1.1 sec 

 
The infotainment robot has two types of constraints that 

have an import influence to safe and fast navigation. The first 
one is dynamic constraints. We build a sensor based control 
algorithm on the platform. Despite the realtime capability with 
Linux and RTAI, the robot has some mount of time delay in 
detecting dynamic obstacle. Because we operated loosely 
coupled component model in asynchronous communication, 
the data processing can be delayed by the waiting time of each 
module. In this robot, device driver commands the laser range 
finder at 5 Hz, due to the communication bandwidth of 
RS232C. Moreover, the realtime resource manager read the 
data from the device driver and set down to the global shared 
memory at 5 Hz. Finally, the sensor based behavior control 
algorithm operated at 5 Hz. Despite hard-realtime constraints, 
the delay time, which is measured from the emergence of 
obstacle to the recognition of obstacle, takes 0.9 sec at most. 
However, the time delay does not impede our environment 
modeling. Because it cannot be eliminated, the modeling is 
required in any robot system. 

The second one is kinematics constraints. The servo motor 
can make the robot move at translational velocities of up to 
0.8 m/s and acceleration of up to 1.0 m/s2 with two-wheel 
differential drive. Due to the acceleration limit, it takes some 
times to stop robot based on the current translational 
velocities. 

 
3.4 Information plotting and generalization  

We counted the number of danger obstacles per 10 cm unit 
cell. From the origin point (0m) to 20m, 200 units’ 
information are accumulated, Fig. 8.  

 
Fig. 8 The number of danger obstacle per location 

The data is generalized by Gaussian kernel, the dotted line 
in Fig. 9. 

 

 
Fig. 9 Generalized number of danger obstacle per location 

This result is congruent with the actual corridor 
environment. That is, the generalized afraid level is high at the 
front of door and low at the other places. In the real corridor 
environment there are three regions of high risk, between 
11.21m and 12.02m, between 13.68m and 15.10m, and 
between 17.53m and 18.95m. Those locations correspond to 
the door locations. 
 
3.5 The result of high speed navigation 

We obtained experimental results in the corridor 
environment. The velocities of robot in each navigation are 
monitored at the periodical interval, Fig. 10. From the upper 
layer, each layer respectively represents the configurations of 
physical doors, the gathered experience data, the trajectory of 
inexperienced robot, and the trajectory of experienced robot. 
In the dangerous area, the velocity of robot is regulated by 
safe speed, 0.2 m/sec on both cases. However, in the 
experienced knowledge the robot can speed up to 0.8 m/sec in 
the safe area. For navigating 10 m section that is composed of 
unsafe and safe area, the robot only took 24.3 sec after 
completing risk accumulation, while the robot took 51.3 sec 
without experience. That is, the average velocity was 
respectively 0.41 m/sec and 0.20 m/sec. 
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Fig. 10 The location of robot at the periodical interval. 

4. CONCLUSION 
 

In this research, we proposed intelligent navigation for 
indoor service robot. The new approach is composed of 
following procedures 

 
 The stopping distance is experimentally measured. 

Based on the distance and robot constraints, collision 
area is modeled. Thus, we can computationally calculate 
the collision area with range sensor data. 

 To investigate the environmental condition, the sensor 
based navigation task is prepared. With low speed 
navigation, the robot gathers location-dependent 
information with afraid model that is evaluated by 
non-blocked collision area. When afraid signal is 
appeared, the robot plots the locations. 

 With the Gaussian kernel of computational learning 
theory, the accumulated location-dependent information 
is generalized. Using the generalized information, high 
speed navigation is achieved. The robot can navigate 
with high speed in the safe area, while the robot 
navigation with low speed in the dangerous area. 

 
Experimental results showed that this approach is proven 

for the safe and fast navigation of mobile robot. We have 
convinced that this intelligent behavior control that is based on 
the experience of real environment is appropriate for indoor 
service robot. 
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