• 제목/요약/키워드: Natural inhibitors

검색결과 529건 처리시간 0.021초

1,3,4-Oxadiazole-2(3H)-thione as a New Scaffold for Pim Kinase Inhibitors

  • Lee, Ah Yeon;Hong, Victor Sukbong;Lee, Jinho
    • Quantitative Bio-Science
    • /
    • 제37권2호
    • /
    • pp.113-124
    • /
    • 2018
  • Pim kinases are important targets for cancer therapies because they are mainly responsible for cancer metastasis and overall therapeutic treatment responses. Because of their unusual structural feature in the hinge region of the ATP-binding site, new binding motifs have been discovered and used for the development of Pim kinases inhibitors. The results of a screening of 5-membered heteroaromatic compounds and the effects of structural modifications on the inhibition of Pim kinases' activities showed the potential scaffold for Pim inhibitors. 1,3,4-Oxadiazole-2(3H)-thione was found as a new scaffold for Pim kinase inhibitors.

Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells

  • Park, Jeong-A;Kim, Young-Eun;Seok, Hyun-Jeong;Park, Woo-Youn;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.176-181
    • /
    • 2011
  • Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heat-shock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage

  • Park, Sangkyu;Park, Jeong-A;Jeon, Jae-Hyung;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.423-434
    • /
    • 2019
  • HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • 제4권1호
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

천연물로부터 사이클로옥시게나제-2 저해제 검색 (Screening of Cyclooxygenase-2 (COX-2) Inhibitors from Natural Products)

  • 문태철;정규찬;손건호;김현표;강삼식;장현욱
    • 약학회지
    • /
    • 제42권2호
    • /
    • pp.214-219
    • /
    • 1998
  • Tissue distributions and association of cyclooxygenase-2 (COX-2) with inflammatory have led us to search for COX-2 selective inhibitors from natural products. Conceptually, COX- 2 selective inhibitors should be expected to retain anti-inflammatory efficacy by inhibition of PGs production while reducing or eliminating the gastric, renal and hemostatic side effects commonly associated with NSAIDs use. Thus, a logical approach to the treatment of inflammatory diseases should involve the inhibitors of COX-2. To develop new COX-2 inhibitors from natural products, two hundred crude drugs were screened by inhibiting PGD2 generation in bone marrow derived mast cells (BMMC). Among them, 6 methanol extracts of crude drugs such as, Bletillae rhizoma, Aconiti kgreani rhizoma, Belamcandae rhizoma, Nelumbinis semen, Gleniae radix, Aurantii immatri pericarpium inhibited more than 85% of BMMC COX-2 activity at a concentration 2.5${\mu}$g/ml.

  • PDF

Development of protein tyrosine phosphatase 1B (PTPIB) Inhibitors from marine sources and other natural products-Future of Antidiabetic Therapy : A Systematic Review

  • KAUR, Kulvinder Kochar;ALLAHBADIA, Gautam;SINGH, Mandeep
    • 식품보건융합연구
    • /
    • 제5권3호
    • /
    • pp.21-33
    • /
    • 2019
  • The incidence of both obesity and Type 2 Diabetes Mellitus( DM) is increasing proportionately so that causes of deaths from these has overtaken from that of malnourishment. Hence it has been recommended to treat the 2 in parallel considering the role of diabesity on health. Important causes of T2DM are insulin resistance (IR) and /or inadequate insulin secretion. Protein tyrosine phosphatase 1B(PTPIB) has a negative impact in insulin signaling pathways and hence plays crucial role inT2DM,since its overexpression might induce IR. Thus PTPIB is considered a therapeutic target for both obesity and T2DM, there has been a search for novel ,promising natural inhibitors. We conducted a pubmed search for articles related to PTPIB inhibitors from natural causes be it marine sources or other natural sources. Out of 988 articles we selected 100 articles for review. Thus various bioactive molecules isolated from marine organisms that can acts as PTPIB Inhibitors and thus possess antidiabetic activity both in vitro/ in vivo studies ,besides products from fruits like Chinese raspberry or curcumin used as routine spices are described with their chemical classes, structure-activity relationships and potency as assessed by IC 50 values are discussed. More work is required to make this a reality.

In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18

  • Kumar, Satish;Jena, Lingaraja;Sahoo, Maheswata;Kakde, Mrunmayi;Daf, Sangeeta;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.60-67
    • /
    • 2015
  • The leading cause of cancer mortality globally amongst the women is due to human papillomavirus (HPV) infection. There is need to explore anti-cancerous drugs against this life-threatening infection. Traditionally, different natural compounds such as withaferin A, artemisinin, ursolic acid, ferulic acid, (-)-epigallocatechin-3-gallate, berberin, resveratrol, jaceosidin, curcumin, gingerol, indol-3-carbinol, and silymarin have been used as hopeful source of cancer treatment. These natural inhibitors have been shown to block HPV infection by different researchers. In the present study, we explored these natural compounds against E6 oncoprotein of high risk HPV18, which is known to inactivate tumor suppressor p53 protein. E6, a high throughput protein model of HPV18, was predicted to anticipate the interaction mechanism of E6 oncoprotein with these natural inhibitors using structure-based drug designing approach. Docking analysis showed the interaction of these natural inhibitors with p53 binding site of E6 protein residues 108-117 (CQKPLNPAEK) and help reinstatement of normal p53 functioning. Further, docking analysis besides helping in silico validations of natural compounds also helped elucidating the molecular mechanism of inhibition of HPV oncoproteins.

Degradation of immunoglobulins, protease inhibitors and interleukin-1 by a secretory proteinase of Acanthamoeba cutellanii

  • Na, Byong-Kuk;Cho, Jung-Hwa;Song, Chul-Yong;Kim, Tong-So
    • Parasites, Hosts and Diseases
    • /
    • 제40권2호
    • /
    • pp.93-99
    • /
    • 2002
  • The effect of a secretory proteinase from the pathogenic amoebae Acanthamoeba castellanii on host's defense-oriented or regulatory proteins such as immunoglobulins, interleukin-1, and protease inhibitors was investigated. The enzyme was found to degrade secretory immunoglobulin A (slgA), IgG, and IgM. It also degraded $interleukin-1{\alpha}$ ($IL-l{\alpha}$) and $IL-l{\beta}$. Its activity was not inhibited by endogenous protease inhibitors, such as ${\alpha}$2-macroglobulin, ${\alpha}l-trypsin$ inhibitor, and ${\alpha}2-antiplasmin$. Furthermore, the enzyme rapidly degraded those endogenous protease inhibitors as well. The degradation of host's defense-oriented or regulatory proteins by the Acanthanoeba proteinase suggested that the enzyme might be an important virulence factor in the pathogenesis of Acanthamoeba infection.

Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach

  • Anugya Gupta;Rajesh Haldhar;Vipul Agarwal;Dharmendra Singh Rajput;Kyung-Soo Chun;Sang Beom Han;Vinit Raj;Sangkil Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.390-398
    • /
    • 2024
  • FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

Apoptosis of MCF7 Cells Treated with PKC Inhibitors and Daunorubicin

  • Park, Won-Chul;Son, Joo-Young;Chung, Sook-Hyun;An, Woon-Gun
    • Preventive Nutrition and Food Science
    • /
    • 제7권2호
    • /
    • pp.128-132
    • /
    • 2002
  • The present study was performed to observe the role of protein kinase C (PKC) inhibitors (H-7, staurosporine) and daunorubicin in the cell death process of MCF7 cells; and examined whether or not the type of induced cell death was apoptosis. The usefulness of the combined therapy of PKC inhibitors and daunorubicin to improve the adverse effect of daunorubicin was also investigated. Cell death was induced by treatment with PKC inhibitors or daunorubicin. Characteristic morphologic features of cell shrinkage, chromatic condensation, and cytoplasmic vacuolization were observed. These treatments also stimulated the cleavage of poly-(ADP-ribose) polymerase (PARP), an early event in apoptosis. With slight differences in the percentage of apoptosis-induced cells, staurosporine, H-7 and daunorubicin effectively induced apoptosis in MCF7 cells. Furthermore, combined treatment of PKC inhibitors and daunorubicin significantly drove the cells into an apoptotic state. Hence, our results revealed the possible therapeutic value of combined therapy for the prevention of drug resistance and adverse side effects.