DOI QR코드

DOI QR Code

Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach

  • Anugya Gupta (Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University) ;
  • Rajesh Haldhar (School of Chemical Engineering, Yeungnam University) ;
  • Vipul Agarwal (Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University) ;
  • Dharmendra Singh Rajput (Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University) ;
  • Kyung-Soo Chun (College of Pharmacy, Keimyung University) ;
  • Sang Beom Han (College of Pharmacy, Chung-Ang University) ;
  • Vinit Raj (College of Pharmacy, Chung-Ang University) ;
  • Sangkil Lee (College of Pharmacy, Chung-Ang University)
  • Received : 2023.09.05
  • Accepted : 2023.10.21
  • Published : 2024.05.01

Abstract

FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

Keywords

Acknowledgement

The authors extend their appreciation to the Research Supporting project, funded by the National Research Foundation of Republic of Korea (NRF) under the Ministry of Education (grant number: 2021R1A6A1A-03044296). Additionally, this research received support from the Chung-Ang University Research Grant in 2023.

References

  1. Amin, M. L. (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7, 27-34. https://doi.org/10.4137/DTI.S12519
  2. Bucao, X. E. N. and Solidum, J. N. (2022) In silico evaluation of antidiabetic activity and ADMET prediction of compounds from Musa acuminata Colla peel. Philipp. J. Sci. 151, 171-192.
  3. Choudhary, M. I., Shaikh, M., Wahab, A. T. and Rahman, A. U. (2020) In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One 15, e0235030.
  4. Daina, A., Michielin, O. and Zoete, V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717.
  5. Damayanti, D. S., Utomo, D. H. and Kusuma, C. (2017) Revealing the potency of Annona muricata leaves extract as FOXO1 inhibitor for diabetes mellitus treatment through computational study. In Silico Pharmacol. 5, 3.
  6. Eijkelenboom, A. and Burgering, B. M. T. (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. 14, 83-97. https://doi.org/10.1038/nrm3507
  7. Gan, L., Liu, P., Lu, H., Chen, S., Yang, J., MacCarthy, J. B., Knudsen, K. E. and Huang, H. (2009) Cyclin D1 promotes anchorage-independent cell survival by inhibiting FOXO-mediated anoikis. Cell Death Differ. 16, 1408-1417. https://doi.org/10.1038/cdd.2009.86
  8. Greer, E. L. and Brunet, A. (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410-7425. https://doi.org/10.1038/sj.onc.1209086
  9. Gross, D. N., Van Den Heuvel, A. P. J. and Birnbaum, M. J. (2008) The role of FoxO in the regulation of metabolism. Oncogene 27, 2320-2336. https://doi.org/10.1038/onc.2008.25
  10. Guan, M., Guo, L., Ma, H., Wu, H. and Fan, X. (2021) Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evid. Based Complement. Alternat. Med. 2021, 5190808.
  11. Gudipati, S., Muttineni, R., Mankad, A. U., Pandya, H. A. and Jasrai, Y. T. (2018) Molecular docking based screening of Noggin inhibitors. Bioinformation 14, 15-20. https://doi.org/10.6026/97320630014015
  12. Halgren, T. A. (2009) Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 49, 377-389. https://doi.org/10.1021/ci800324m
  13. Irfan, A., Faisal, S., Zahoor, A. F., Noreen, R., Al-Hussain, S. A., Tuzun, B., Javaid, R., Elhenawy, A. A., Zaki, A. E. A., Ahmad, S. and Abdellattif, M. H. (2023) In silico development of novel benzofuran-1,3,4-oxadiazoles as lead inhibitors of M. tuberculosis polyketide synthase 13. Pharmaceuticals 16, 829.
  14. John, A., Umashankar, V., Krishnakumar, S. and Deepa, P. R. (2015) Comparative modeling and molecular dynamics simulation of substrate binding in human fatty acid synthase: enoyl reductase and β-ketoacyl reductase catalytic domains. Genomics Inform. 13, 15-24. https://doi.org/10.5808/GI.2015.13.1.15
  15. John, A., Umashankar, V., Samdani, A., Sangeetha, M., Krishnakumar, S. and Deepa, P. R. (2016) In silico structure prediction of human fatty acid synthase-dehydratase: a plausible model for understanding active site interactions. Bioinform. Biol. Insights 10, 143-154.
  16. Kalirajan, R., Pandiselvi, A., Gowramma, B. and Balachandran, P. (2019) In-silico drug design, ADMET screening, MM-GBSA binding free energy of some chalcone substituted 9-anilinoacridines as HER2 inhibitors for breast cancer. Curr. Drug Res. Rev. 11, 118-128. https://doi.org/10.2174/2589977511666190912154817
  17. Kandula, V., Kosuru, R., Li, H., Yan, D., Zhu, Q., Lian, Q., Ge, R.-S., Xia, Z. and Irwin, M. G. (2016) Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc. Diabetol. 15, 44.
  18. Keogh, J. P. (2012) Membrane transporters in drug development. Adv. Pharmacol. 63, 1-42. https://doi.org/10.1016/B978-0-12-398339-8.00001-X
  19. Khan, H., Sirajuddin, M., Badshah, A., Ahmad, S., Bilal, M., Salman, S. M., Butler, I. S., Wani, T. A. and Zargar, S. (2023) Synthesis, physicochemical characterization, biological evaluation, in silico and molecular docking studies of Pd(II) complexes with P, S-donor ligands. Pharmaceuticals 16, 806.
  20. Kumar, A., Rathi, E. and Kini, S. G. (2019) E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J. Mol. Struct. 1189, 299-306. https://doi.org/10.1016/j.molstruc.2019.04.023
  21. Lee, S., Zhu, C., Yamauchi, J., Zhu, P., Feng, X., Qu, S. and Dong, H. H. (2020) The forkhead box O family in insulin action and lipid metabolism. In Lipid Signaling and Metabolism (J. M. Ntambi, Ed.), pp. 247-272. Academic Press.
  22. Lee, S. and Dong, H. H. (2017) FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 233, R67-R79. https://doi.org/10.1530/JOE-17-0002
  23. Lu, H. and Huang, H. (2011) FOXO1: a potential target for human diseases. Curr. Drug Targets 12, 1235-1244. https://doi.org/10.2174/138945011796150280
  24. Nakae, J., Oki, M. and Cao, Y. (2008) The FoxO transcription factors and metabolic regulation. FEBS Lett. 582, 54-67. https://doi.org/10.1016/j.febslet.2007.11.025
  25. Peng, S., Li, W., Hou, N. and Huang, N. (2020) A review of FoxO1- regulated metabolic diseases and related drug discoveries. Cells 9, 184.
  26. Pires, D. E. V., Blundell, T. L. and Ascher, D. B. (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  27. Sahu, A., Pradhan, D., Raza, K., Qazi, S., Jain, A. K. and Verma, S. (2020) In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity. In Proceedings of the 12th International Conference on Bioinformatics and Computational Biology, Vol. 70, pp. 21-32.
  28. Sakle, N. S., More, S. A. and Mokale, S. N. (2020) A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: an updated prototype in drug discovery. Sci. Rep. 10, 17217.
  29. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. and Sherman, W. (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221-234.
  30. Srivastava, V., Yadav, A. and Sarkar, P. (2022) Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater. Today Proc. 49, 2999-3007. https://doi.org/10.1016/j.matpr.2020.10.055
  31. Tanaka, H., Nagashima, T., Shimaya, A., Urano, Y., Shimokawa, T. and Shibasaki, M. (2010) Effects of the novel Foxo1 inhibitor AS1708727 on plasma glucose and triglyceride levels in diabetic db/db mice. Eur. J. Pharmacol. 645, 185-191. https://doi.org/10.1016/j.ejphar.2010.07.018
  32. Wakasugi, H., Yano, I., Ito, T., Hashida, T., Futami, T., Nohara, R., Sasayama, S. and Inui, K.(1998) Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin. Pharmacol. Ther. 64, 123-128. https://doi.org/10.1016/S0009-9236(98)90030-3
  33. Wang, Y., Xiao, Q., Chen, P. and Wang, B. (2019) In silico prediction of drug-induced liver injury based on ensemble classifier method. Int. J. Mol. Sci. 20, 4106.
  34. Xing, Y., Li, A., Yang, Y., Li, X.-X., Zhang, L.-N. and Guo, H.-C. (2018) The regulation of FOXO1 and its role in disease progression. Life Sci. 193, 124-131. https://doi.org/10.1016/j.lfs.2017.11.030
  35. Xu, R. and Wang, Z. (2021) Involvement of transcription factor FoxO1 in the pathogenesis of polycystic ovary syndrome. Front. Physiol. 12, 649295.
  36. Ya'u Ibrahim, Z., Uzairu, A., Shallangwa, G. and Abechi, S. (2020) Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Sci. Afr. 10, e00570.
  37. Yang, Y., Zhao, Y., Liao, W., Yang, J., Wu, L., Zheng, Z., Yu, Y., Zhou, W., Li, L., Feng, J., Wang, H. and Zhu, W.-G. (2009) Acetylation of FoxO1 activates bim expression to induce apoptosis in response to Histone deacetylase inhibitor depsipeptide treatment. Neoplasia 11, 313-324. https://doi.org/10.1593/neo.81358
  38. Zhang, X., Tang, N., Hadden, T. J. and Rishi, A. K. (2011) Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 1813, 1978-1986. https://doi.org/10.1016/j.bbamcr.2011.03.010
  39. Zou, P., Liu, L., Zheng, L., Liu, L., Stoneman, R. E., Cho, A., Emery, A., Gilbert, E. R. and Cheng, Z. (2014) Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle 13, 3759-3767. https://doi.org/10.4161/15384101.2014.965977