DOI QR코드

DOI QR Code

Development of protein tyrosine phosphatase 1B (PTPIB) Inhibitors from marine sources and other natural products-Future of Antidiabetic Therapy : A Systematic Review

  • Received : 2018.11.28
  • Accepted : 2019.04.10
  • Published : 2019.06.30

Abstract

The incidence of both obesity and Type 2 Diabetes Mellitus( DM) is increasing proportionately so that causes of deaths from these has overtaken from that of malnourishment. Hence it has been recommended to treat the 2 in parallel considering the role of diabesity on health. Important causes of T2DM are insulin resistance (IR) and /or inadequate insulin secretion. Protein tyrosine phosphatase 1B(PTPIB) has a negative impact in insulin signaling pathways and hence plays crucial role inT2DM,since its overexpression might induce IR. Thus PTPIB is considered a therapeutic target for both obesity and T2DM, there has been a search for novel ,promising natural inhibitors. We conducted a pubmed search for articles related to PTPIB inhibitors from natural causes be it marine sources or other natural sources. Out of 988 articles we selected 100 articles for review. Thus various bioactive molecules isolated from marine organisms that can acts as PTPIB Inhibitors and thus possess antidiabetic activity both in vitro/ in vivo studies ,besides products from fruits like Chinese raspberry or curcumin used as routine spices are described with their chemical classes, structure-activity relationships and potency as assessed by IC 50 values are discussed. More work is required to make this a reality.

Keywords

References

  1. Abdul, Q.A., Choi, R.J., Jung, H.A., & Choi, J.S.(2016) Health benefit of fucosterol from marine algae: A Review. .J Sci Food Agric,96, 1856-1866. https://doi.org/10.1002/jsfa.7489
  2. Ahmad,F., Li,P.M., Myerovitch, J., & Goldstein, B.J.(1995). Osmotic loading of neutralizing antibodies demonsrtrates a role for protein tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem, 270, 20503-20508. https://doi.org/10.1074/jbc.270.35.20503
  3. Ahmad ,F., Considine, R.V., Bauer, T.L., Ohannesian, J.P., Marco, C.C., & Goldstein, M.J.(1997). Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced Protein tyrosine phosphatases in adipose tissue. Metabolism, 46, 1140-1145. https://doi.org/10.1016/S0026-0495(97)90206-7
  4. American Diabetes Association (2009). Diagnosis and classificationof diabetes mellitus. Diabetes Care, doi:10.2337/dc 14-S081.
  5. American Diabetes Association (2015) Classification and diagnosis of dibetes. Diabetes Care, 40,S11-S24. https://doi.org/10.2337/dc17-S005
  6. Andersen, H.S., Oben, O.H., Iversen, L.F., Sorensen, A.L.P.., Mortensen, S.P., Christensen, M., Branner, S.(2007). Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of Protein tyrosine phosphatase 1B. J Med Chem, 50, 4443-4459.
  7. Ali, M.Y., Kim, D.H., Seong, S.H., Kim, H.R., Jung, H.A.,& Choi, J. S.(2009). $\alpha$-Glucosidaseand Protein tyrosine phosphatase 1B inhibitory activity of Plastoquinones from Marine brown alga Sargassum Serratfolium. Mar Drugs,15, 368. https://doi.org/10.3390/md15120368
  8. Al l-Lawati, J.A.(2017). Diabetes Mellitus: ALocal and Global Public Health Emergency! Om Med J, 32, 177-179. https://doi.org/10.5001/omj.2017.34
  9. Bence, K.K., Delibrogiv, M., Xue, B., Gorgun, C.Z., Hotamisligil, G.S., Neel, B.G., & Kahn, B.B.(2006).Neuronal PTP1B regulates body weight ,adiposity and leptin action. Nat Med, 12, 917-924. https://doi.org/10.1038/nm1435
  10. Blunt, J.W., Coop, B.R., Hu, W.P., Munro, M.H., Northcote, P.T., & Prinsep, M.R.(2009). Marine natural products. Nat Prod Rep, 26, 170-244. https://doi.org/10.1039/b805113p
  11. Brownlee, M.(2001). Biochemistry and molecular Cell Biology of diabetic complications. Nature, 414, 813-820. https://doi.org/10.1038/414813a
  12. Brown Shimer, S., Johnson, K.A., Lawrence, J.B., Johnson, C., Bruskin, A., Green, N.R., & Hill, D.E.(1990). Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyosyl phosphatase 1B. Proc Natl Acad Sci USA, 87, 5148-52
  13. Byon ,J.C.H., Kusari, A.B., & Kusari, J.(1998). Protein tyrosine phosphatase 1B acts as a negative regulator of insulin signal eduction. Mol Cell Biochem, 182, 101-108. https://doi.org/10.1023/A:1006868409841
  14. Cheng ,A., Dube, N., Gu, F., & Tremblay, M.L.(2002). Coordinated action of Protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem, 269, 1050-1059. https://doi.org/10.1046/j.0014-2956.2002.02756.x
  15. Cheng, A., Uetani, N., Simoncic, P.D., Chaubey, V.P., Lee-Loy, A., McGlade, C.J., Kennedy, B.P., & Tremblay, M.L.(2002). Attenuation of leptin action and regulation of Protein tyrosine phosphatase 1B. Dev Cell, 12, 497-503.
  16. Cho,N.H., Shaw, J.E., Karunga, S., Hua8ng, Y., DeRocha Fernandes, J.D., Ohlrogge, A.W., & Malanda, B.(2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diab Res Clin Pract, 138, 271-281. https://doi.org/10.1016/j.diabres.2018.02.023
  17. Choochote, 20W., Suklampoo, L., & Ochaikul, D.(2014). Evaluation of antioxidant capacities of green microalgae. J Appl Phycol, 26, 43-48. https://doi.org/10.1007/s10811-013-0084-6
  18. Cheung, A., Kusari, J., Jansen, D., Bandyopadhyay, D., Kusari, A,, & Bryer-Ash, M.(1999). Marked impairment of Protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type2 diabetes mellitus. J Lab Clin Med, 134, 115-123. https://doi.org/10.1016/S0022-2143(99)90115-4
  19. Debbab, A., Aly, A.H., Lin, W.H., & Proksch, P.(2010). Bioactive compounds from marine bacteria and fungi. Microb Biotechnol, 3, 544-563. https://doi.org/10.1111/j.1751-7915.2010.00179.x
  20. Dube, N., & Tremblay, M.L.(2005). Involvement of the small protein tyrosine phosphatases TC-PTB and PT P1B in signal transduction and disease: From diabetes, obesity to cell cycle, and cancer. Biochym Biophys Acta, 1754, 108-117.
  21. Elefthenou, P., Geronikaki, A., & Petrou, A.(2019). PTPIB Inhibition, A Promising Approach For the Treatment of Diabetes Type II. Curr Top Med Chem, ;doi102174/156802619666 19020 1152153
  22. Fantus, L.G., Deragon, G., Lai, R., & Tang, S.(1995). Modulation of insulin action by vandate: Evidence of a role of phosph1otyrosine phosphatase activity to alter cellular signaling. Mol Cell Biochem, 153, 103-112. https://doi.org/10.1007/BF01075924
  23. Fantus, L.G., & Tsiani, E.(1998). Multifunctional actions of vanadium compounds on insulin signaling pathways :Evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem, 182, 102-119.
  24. Faulkner, D.(1977). Marine Natural Product Chemistry. Springer; New York,NY,USA.
  25. Fouad, M., Edrada, R.A., Ebel, R.,Wray, V., Muller, W.E.G., Lin, W.H., & Proksch, P.(2006). Cytotoxic Isomalabaricane Triterpenes from the marine sponge Rhabdastrella Globostellata. J Nat Prod, 69, 211-218. https://doi.org/10.1021/np050346t
  26. Goldstein, B.J., Bittner-Kowalczyk, A., While, M.F., & Harbeck, M.(2000). Tyrosine dephosphorylation and deactivation of insulin receptor substrate -1 by protein tyrosine phosphatase 1B mediated leptin signaling. J Biol Chem, 275, 4283-4289. https://doi.org/10.1074/jbc.275.6.4283
  27. Gupta, S., & Abu-Ghannan, N.(2011). Bioactive poteial and possible health effects of edible brown seaweeds. Trends Food Sci Technol, 22, 315-326. https://doi.org/10.1016/j.tifs.2011.03.011
  28. Ingelbrigtsen, R.A., Hansen, .E, Andersen, J.H., & Eilertsen, H.C.(2015). Light and temperature effects on bioactivity in diatoms. J Applied Physiol, 28, 939-950.
  29. Jiao, W.H., Huang, X.J., Yang, J.S., Yang, F., Piao, S.J., Gao. H., & Li, J.(2012). Dysidavarones A-D ,new sequiterpene quinones from the marine sponge Dysidea avara. Org Lett, 14, 202-205. https://doi.org/10.1021/ol202994c
  30. Jiang, C.S., Liang, L.F., & Guo, Y.W.(2012). Natural products possessing Protein tyrosine phosphatase 1B-(PTP1B) inhibitory activity found in the last decades. Acta Pharmacol Sin, 33, 1217-45. https://doi.org/10.1038/aps.2012.90
  31. Jung, H.A.,Yoon, N.Y.,Woo, M.H., & Choi, J.S.(2008). Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose mediated protein damage and rat lens aldolase reductase. Fish Sci, 74, 1363-1365. https://doi.org/10.1111/j.1444-2906.2008.01670.x
  32. Jung, H.A., Islam, M.N., Lee, C.M., Jeong, H.O., Chung, H.Y., Woo, H.C., & Choi, J.S.(2012). Promising antidiabetic potential of fucoxanthin isolated from the edible brown algaeEisenia bicyclis and Undaria pinnatifida. Fish Sci, 78, 1321-1329. https://doi.org/10.1007/s12562-012-0552-y
  33. Jung, M., Park, M., Lee, H.C., Kang, Y.H., Kang, E.S., Kim, S.K.(2001). Antidiabetic agents from medicinal plants. Curr Med Chem, 13, 1203-1218. https://doi.org/10.2174/092986706776360860
  34. Khan,W., Rayirath, U.P., Subramaniam, S., Jithesh, M.N., Rayorath, P., Hodges, D.P., & Critchley, A.T.(2009). Seaweed extracts as biostimulants of plant growth and development . J Plant Growth Regul, 228, 386-399.
  35. Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L. Zobotony ,J.M., Moghal, N., & Lubkin, M.(2000) Increased energy expenditure,decreased adiposityand tissue el. pecific insulin sensitivity in Protein tyrosine phosphatase 1B-ine phosphatase 1B-deficient mice. Mol Cell Biol, 20, 5479-5489. https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  36. Kim, K.Y., Nam, K.A., Kurihara, H., & Kim, S.H.(2008). Potent Alpha-glucosidase inhibitors purified from the red algae Grateloupa elliptica. Phytochemistry, 69, 2820-25. https://doi.org/10.1016/j.phytochem.2008.09.007
  37. Kim, K.Y., Nam, K.A., Kurihara, H., & Kim, S.H.(2010). Alpha-glucosidase inhibitory activity of bromophenol purified from the red algae Polyopes lancifolia. J Food Sci,75, H145-H150.
  38. Kostrzewa, T., Przychodzen, P., Gorska-Ponikowska, M., & Kuban-Jan kowska, A.(2019). Curcuminand cinnamaldehyde as PTPIB inhibitors with Antidiabetic and Anti Cancer Potential. Anticancer Res, 39(2),745-749. https://doi.org/10.21873/anticanres.13171
  39. Kulvinder, K.K., Allahbadia, G.N., & Mandeep, S.(2019). Importance of simultaneous treatment of obesity and diabetes mellitus: A sequelae to the understanding of diabesity-A review. Obes Res Open J., 6(1),1-10. doi: 10.17140/OROJ-6-136 .
  40. Kurihara, H,, Mitain, T., Kawabata, J., & Takahashi, K.(1999). Inhibitory potencies of bromophenols from Rhodomelacea algae against ${\alpha}$-glucosidase activity. Fish Sci, 65, 300-303. https://doi.org/10.2331/fishsci.65.300
  41. Kurihara, H., Mitain, T., Kawabata, J., & Takahashi, K.(1999).Two new bromophenols from the red alga Odonthalia corymbifera. J Nat Prod, 62, 882-884. https://doi.org/10.1021/np980324p
  42. Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Espito, F., Helland, K., & Hanssen, K..O.(2016). Bioactivity screening of microalgae for antioxidant, antiinflammatory, anticancer, antidiabetes and antibacterial activities. Front Mar Sci, doi:10.3389/fmars.2016.00068.
  43. Lee, D. S., Jang, J.H., Ko, W., Kim, K.S., Sohn, J.H., Kang, M.S., Ahn, J.S., Kim, Y.C.,& Oh, H.(2013). PTPIB inhibitor and anti-inflammatory effects of secondary metabolites isolated from the marine derived fungus Penicillium sp J-55. Mar Drugs, 11, 1409-1426. https://doi.org/10.3390/md11041409
  44. Lee, S.H., Min, K.H., Han, J.S., Lee, D.H., Park, D.B., Jung, W.K., Park, P.J., & Jeon, B.T. (2012).Effect of brown alga ,Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/dbmice,a model of type 2 diabetes mellitus. Food Chem Toxicol, 50, 575-582. https://doi.org/10.1016/j.fct.2011.12.032
  45. Lee, S.H., Ko, S.C., Kang, M.C., Lee, D.H., & Jeon, Y.J. (2016). Octa phlorethol,a marine algae product ,exhibits antidiabetic effects of type 2 diabetic mice by activating amp-activated protein kinaseand upregulating the expression of glucose transporter 4. Food Chem Toxicol, 91, 58-64 https://doi.org/10.1016/j.fct.2016.02.022
  46. Lee, H.J., Kim, Y.A., Lee, J.L., Lee, B.J., & Seo, Y.W.(2007). Screening of Korean marine plants extracts for inhibitory activity on Protein tyrosine phosphatase 1B. J Appl Biol Chem,50, 74-77.
  47. Leung, K.W., Posner, B.I., & Just, G.(1999). Periodinates: A new class of Protein tyrosine phosphatase Inhibitors. Bioorg Med Chem Lett, 9, 353-356. https://doi.org/10.1016/S0960-894X(98)00744-6
  48. Liang, L., Kurtan,T., Mandi, A., Gao, L.X., Li, J., Zhang, W., & Guo, Y.W.(2014). Sarsolelane and Capnosane Diterpenes from Hainan soft coral Sarcophyton trocheliophorum Marenzeller as PTPIB Inhibitors. Eur J Org Chem,11 ,1841-1847.
  49. Liang, L.F., Gao, L.X.,Li, J.,Tagialatela -Scafatti, O., & Guo, Y.W.(2013). Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTPIB Inhibitors. Biorg Med Chem Lett, 21,5076-5080. https://doi.org/10.1016/j.bmc.2013.06.043
  50. Li, X., Xu, Q., Li, C., Luo, J., Li, X., Wang, L., Jiang, B., & Shi, D.(2019). Toward a treatment of diabesity: in vitro and in vivo evaluation of uncharged bromophenol derivatives as a new series of PTPIB Inhibitors. Eur J Med Chem, 166, 178-185. https://doi.org/10.1016/j.ejmech.2019.01.057
  51. Li, Y., Zhang, Y., Shen, X., & Guo, Y.W.(2009). A novel sequiterpine quinine from Hainan sponge Dysidea villosa. Bioorg Med Chem Lette, 19, 390-392. https://doi.org/10.1016/j.bmcl.2008.11.068
  52. Liu, S., Zeng, L.F., Wu, L., Yu, X., Xue, T., Gunawan. A.M., Long, Y.Q., & Zhang, Z.Y.(2008). Targeting inactive enzyme conformation: Aryl diketoid as a new class of PTP1B1 inhibitors. J Am Chem Soc, 130, 17075-17084. https://doi.org/10.1021/ja8068177
  53. Lund, I.K., Hansen, J.A., Andersen, H.S., Moller, N.F.H., Billestrup, N.(2005). Mechanism of protein tyrosine phosphatase 1B inhibition of leptin signaling. J Mol Endocrinol, 34, 339-351. https://doi.org/10.1677/jme.1.01694
  54. Maeda, H., Hosokawa, M., Sashima,T., & Miyashita, K.(2007). Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and dcreases blood glucose in obese/diabetic KK-Ay mice. J Agric FoodChem, 55, 7701-7706. https://doi.org/10.1021/jf071569n
  55. Mannikam, V., Vasiljev, T., Donkor, O.N., & Mathai, M.L.(2016). A review of potential marine derived hypotensive and antiobesity peptides. Crit Rev Food Sci Nutr, 56, 92-112. https://doi.org/10.1080/10408398.2012.753866
  56. Meshkani, R., Taghikami, M., Al-Khateb, H., Larijani, B., Khatami, S., Sidiropoulos, G.K., Hegde, R.A., & Adeli, K.(2007). Polymorphisms within the protein tyrosine phosphatase 1B(PTPN1) gene promoter.Functional characterization and association with type 2 diabetes and related metabolic traits. Clin Chem, 53, 1585-1592. https://doi.org/10.1373/clinchem.2007.088146
  57. Meyerovitch, J., Farfel, Z., Sack, J., & Schechter, Y.(1987). Characterizatiob and mode of action ,Oral administration of vandate normalizes blood glucose levels in streptozotocin -treated rats. J Biol Chem, 1262, 6658-6662. https://doi.org/10.1016/S0021-9258(18)48292-0
  58. Meyerovitch, J., Backer, J., & Kahn, C.R.(1989). Hepatic phosphotyrosine phosphatase activity and its alterations in diabeticrats. J Clin Investig, 84, 976-983. https://doi.org/10.1172/JCI114261
  59. Mohamed, S., Hashim, S.N., & Rahman, H.A.(2012). A sustainable functional food for complementary alternative therapy. Trends Food Sci Technol, 23, 83-96. https://doi.org/10.1016/j.tifs.2011.09.001
  60. Moon, H.F., Islam, N., Ahn, B.R., Chaudhary, S.S., Sohn, H.S., Jung, H.A., & Choi. J.S.(2011) Protein tyrosine phosphatase 1B and ${\alpha}$-glucosidase inhibitory Phlorotannins from edible brown algae Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem, 75, 1472-1480. https://doi.org/10.1271/bbb.110137
  61. Myers, M.P., Andersen, J.N., Cheng, A., Tremblay, M.L., Horvath, C.M., Parisien, J.P., & Salmeen, A.(2001).TYK2 and JAK2 are substrates of Protein tyrosine phosphatase 1B. J Biol Chem, 276, 47771-47774. https://doi.org/10.1074/jbc.C100583200
  62. Pangestuti, R., & Kim, S.K.(2011). Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods, 3, 255-266. https://doi.org/10.1016/j.jff.2011.07.001
  63. Peng, j., Yuan, J.P., Wu, C.F., & Wang, J.H.(2011). Fucoxanthin,a marine carotenoid present in brown seaweeds and diatoms:Metabolism and bioactivities relevant to human health. Mar Drugs, 9, 1806-1828. https://doi.org/10.3390/md9101806
  64. Pontiroli, A.E.(2004) Type 2 diabetes mellitus is becoming the most common type of diabetes in school children. Acta Diabetol, 41, 85-90 https://doi.org/10.1007/s00592-004-0149-8
  65. Qin, J., Su, H., Zhang, Y., Gao, J., Zhu, L., Wu ,X., Pan,H., & Li, X.(2010). Highly brominated metabolites fromred alga Laurencia similis inhibit Protein tyrosine phosphatase 1B Bioorg. Med Chem Lett, 20, 7152-7154. https://doi.org/10.1016/j.bmcl.2010.08.144
  66. Ray, S.D.(2017). A worldwide yearly survey of new data in adverse reactions. Elsevier;Waltham.MA.USA. .
  67. Ritta, K.(2008). Brown Algal phlorotannins : Improving and Applying Chenical Methods. University of Turku; Turku.Finland .
  68. Ruocco, N., Constantini,S., Guarinello, S., & Constantini, M.(2016). Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical. Molecules , 21, 551. https://doi.org/10.3390/molecules21050551
  69. Saleh, A.S.M., Zhang, Q., & Shen, Q.(2016). Recent research in antihypertensive activity of food protein derived hydrolysates and peptides. Crit Rev Food Sci Nutr, 56, 760-787. https://doi.org/10.1080/10408398.2012.724478
  70. Scheen, A.J., & Lefebvre, J.(1999). Troglitazone:antihyperglycemic activity and potential role in the treatment of type 2 diabetes. Diabetes Car, 22, 1568-77. https://doi.org/10.2337/diacare.22.9.1568
  71. Seo, C., Han,J.J., Lee, H.K., & Oh, H.(2011). PTPIB Inhibitory secondary metabolites from the Antarctic lichen Lecidella carpaththica. Mycology, 2, 18-23. https://doi.org/10.1080/21501203.2011.554906
  72. Seo, C., Sohn, J.H., Oh, H., Kim, B.Y., & Ahn, J.(2009). Isolation of Protein tyrosine phosphatase 1B-inhibitory metabolite from the marine derived fungus Cosmospora sp.SF 5060. Biorg Med Chem Lett, 19, 6095-6097. https://doi.org/10.1016/j.bmcl.2009.09.025
  73. Shi, D., Feng, X., He, J., Li, L., Fan, X., & Han, L.(2008). Inhibition of bromophenols against PTPIB and antihyperglycemic effects of Rhodomela confervoides extract in diabetic rats. Chi Sci Bull, 53, 2476-2479. https://doi.org/10.1007/s11434-008-0353-y
  74. Shi, D., Guo, S.J., Jiang, B., Guo, C., Wang, T., Zhang, l., & Li, J.(2013). HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides :Synthesis of antidiabetic effects in C57BL/KsJ-db/dbmice. Mar Drugs, 11, 350-362. https://doi.org/10.3390/md11020350
  75. Sohn, J.H., Lee, Y.R., Lee, D.S., Kim, Y.C., & Oh, H.(2013). PTP1B inhibitory andantiinflammatory effects of secondary metabolites from marine derived fungal strains Penicillium sp and Eurotium sp. J MIcrobiol Biotechnol, 23, 1206-1211. https://doi.org/10.4014/jmb.1303.03078
  76. Targett, N.M., & Arnold, T.M.(1998). Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol, 34, 195-205. https://doi.org/10.1046/j.1529-8817.1998.340195.x
  77. Thilagam, E., Parimala Devi, B., Kumarappan, C., & Mandal, S.C.(2013). ${\alpha}$- Glucosidase and ${\alpha}$-amylatory inhibitory activity of Senna surattens. J Acupunct Meridian Stud, 6, 24-30. https://doi.org/10.1016/j.jams.2012.10.005
  78. Wang, W., Odaka, K., Shi H., Wang, Y., Okuyama, T.(2005). Structure and reductase inhibitory effects of bromophenols from the red algae Symphocladia latiuscala. J Nat Prod, 68, 620-622. https://doi.org/10.1021/np040199j
  79. Wilson, D.P., Wan, Z.K., Xu, W.X,. Kirincich, S.J., Follows, B.C., Joseph-McCarthy, D., & Foreman, K.(2007). Structure based optimization of Protein tyrosine phosphatase 1B inhibitors:From the active site to the second phosphotyrosine binding site, J Med Chem, 50, 4681-4698. https://doi.org/10.1021/jm0702478
  80. Wu, X., Hardy, V.E., Joseph, J.L, Jabbour, S., Mahadev, K., Zhu, L., & Goldstein, B.J.(2003). Protein tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition. Metabolism, 52, 705-712. https://doi.org/10.1016/S0026-0495(03)00065-9
  81. Xin, F., Yang, F., Liang, Y., Li, L., Xia, Y., Jiang, F., Liu, W., & Qi, Y.(2019). PTPIB Inhibitors. Eur J Med Chem, 164, 408-4 https://doi.org/10.1016/j.ejmech.2018.12.032
  82. Yamazaki, H., Sumilat, D.A., Kanno, S., Ukai, K., Rotinsulu, H., Wewenkang, D.S., & Ishikawa, M.(2013a). A polybromodiethyl ether from an Indonesian marine sponge Lamellodysidea hebacea and its chemical derivatives inhibit Protein tyrosine phosphatase 1B-an important target for diabetes treatment. J Nat Med, 67, 730-735. https://doi.org/10.1007/s11418-012-0735-y
  83. Yamazaki,,H., Nakazawa, T., Sumilat, D.A., Takahashi, O., Ukai, K., Takahashi, S,, & Namikoshi, M.(2013b) Euryspongins A-C ,Three new unique sequiterpenes from a marine sponge Euryspongia sp. Bioorg Med Chem Lett, 23, 2151-2154.. https://doi.org/10.1016/j.bmcl.2013.01.102
  84. Zabotony, J., Bence-Hanulee, K.K,. Stricker Krongrad, A., Haj, F,, Wang, Y,. Minokoshi, Y.,& Kim. Y.B.(2002). regulates leptin signal transduction in vivo. Dev Cell, 2, 489-495. https://doi.org/10.1016/S1534-5807(02)00148-X
  85. Zhang, X.Y,. Li, W., Wang, J., Li, N., Cheng, M.S., & Koike, K.(2019). Protein tyrosine phosphatase 1B-inhibitory activities of ursane type triterpenesfrom Chinese raspberry k,fruits of Rubus chingii. Chin JNat Med, 17(1), 15-21.
  86. Zhang ,S., & Zhang,Z. Y.(2007). PTP1B as a drug target :Recent developments in PTP1B inhibitor discovery. Drug Discov Today, 12, 373-381. https://doi.org/10.1016/j.drudis.2007.03.011
  87. Zhang,Z.Y., & Lee, S.Y.(2003). PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin Investig Drug, 12, 373-381. https://doi.org/10.1517/13543784.12.3.373
  88. Zhang,Y.L., Guo, Y.W., Jiang, H.L., & Shen, X..A.(2009). new sequiterpene quinines,dysidine ,from the sponge Dysidea villosa activates the insulin signaling pathway through inhibition of PTPases. Acta Pharm Sin, 30, 333-345. https://doi.org/10.1038/aps.2009.5
  89. Zhao, C., Wu ,Y.J., Yang, C.F., Liu, B., Huang, Y.F.(2015). Hyotensive, hypoglycemic and hypolipidemic effects of bioactive compounds from microalgae and marine microorganisms. Int J Food Sci Technol, 50, 1705-1717. https://doi.org/10.1111/ijfs.12860