
INTRODUCTION

Most living organisms commonly express heat shock pro-
teins and their expression increases in response to a variety 
of stresses (Welch, 1993). Heat shock-induced expression of 
genes was first discovered in chromosomal puffing by heat 
shock in Drosophila busckii in 1962 (Ritossa, 1962). In 1974, 
it was first reported that the synthesis of a few proteins was 
enhanced by stresses such as heat shock in Drosophila cells 
(Tissieres et al., 1974). Heat shock protein 90 (HSP90) is a 
member of the heat shock protein family and functions as a 
molecular chaperone that supports the stability of client pro-
teins. Typical examples of the client proteins are mutated p53, 
Bcr-Abl, Raf-1, Akt, human epidermal growth factor 2 (Her2/
ErbB2), HIF-1α, etc. (Neckers and Workman, 2012).

HSP90 is evolutionarily conserved and has many isoforms, 
such as HSP90α, HSP90β, Grp94, and HSP75/TRAP1. 
Among these isoforms, HSP90α and HSP90β are localized 
in cytosol, HSP90α (major form) is constitutively expressed, 
and expression of HSP90β (minor form) is inducible (Sreed-
har et al., 2004). HSP90 consists of three domains, N-terminal 

domain (N-domain), middle domain (M-domain), and C-termi-
nal domain (C-domain). The N-domain has an ATP-binding 
pocket and ATPase activity (Prodromou et al., 1997). HSP90 
forms a flexible dimer by interaction of C-domains. The forma-
tion and dissociation of compact dimers involving N-domains 
is important for the molecular chaperone activity (Rohl et al., 
2013). Binding of ATP to the ATP-binding pocket of the N-do-
main promotes dimerization between the two N-domains, and 
the ATPase activity of the N-domain induces the hydrolysis of 
ATP to ADP, resulting in N-domain dissociation (Prodromou 
et al., 2000; Richter and Buchner, 2001). HSP90 requires 
co-chaperones, such as cdc37, Hop, p23, PP5, and Xap2, to 
function as a molecular chaperone. Co-chaperones interact 
with HSP90 and regulate ATPase activity for molecular chap-
erone activity of HSP90 and recruit client proteins to HSP90 
(Zuehlke and Johnson, 2010; Rohl et al., 2013). 

In most cancer cells, HSP90 and its client proteins are ex-
pressed at higher levels than normal cells. The client proteins, 
such as Her2/ErbB2, v-Src, Raf-1, Akt, hTERT, are important 
for cancer cell survival and growth (Ferrarini et al., 1992; Sharp 
and Workman, 2006; Miyata et al., 2013) (Table 1). HSP90 is 
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HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than 
normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors 
mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin 
and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through 
acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On 
the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client 
proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic 
cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss 
that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.
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also involved in the transition from benign to malignant cells 
(Boltze et al., 2004). Therefore, many researchers have in-
vestigated the potential of HSP90 as a target of anti-cancer 
drugs (Neckers et al., 1999; Sharp and Workman, 2006; Modi 
et al., 2011; Dickson et al., 2013). As a result, several HSP90 
inhibitors have been studied for use as an anticancer agent, 
and some clinical trials are underway. In the first part of this 
review, we provide an overview on traditional HSP90 inhibi-
tors and their effects on cancers. HSP90 inhibitors hamper 
HSP90 function by competitively binding to the ATP binding 
site of HSP90, blocking the interaction with co-chaperones, or 
modulating acetylation. In the second part, we present a novel 
group of HSP90 inhibitors inducing cleavage of HSP90 and 
suggest that cleavage of HSP90 can be another mechanism 
of HSP90 inhibitors to suppress the activity of HSP90.

HSP90 INHIBITORS BLOCKING ATP BINDING

HSP90 inhibitors generally interrupt ATP binding to HSP90 
and can be classified into ansamycins and non-ansamycins 
depending on whether they have a benzoquinone structure 
(Table 2).

Ansamycins 
Ansamycins, including geldanamycin (GM), herbimycin A, 

and the macbecins, are antibiotics with anti-cancer activity and 
include the benzoquinone structure. These antibiotics induce 
death of tumor cells through HSP90 inhibition and degradation 
of the client proteins that are required for tumor cell survival 
and growth (Zhang and Zhang, 2011).

GM competitively binds to the ATP-binding pocket in the 
N-domain of HSP90 and inhibit chaperone activity of HSP90 
via down-regulation of ATPase activity (Grenert et al., 1997). 
17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespi-
mycin) is an analogue of GM with higher binding affinity and 
lower toxicity (Krishnamoorthy et al., 2013). 17-AAG inhibits 
cell proliferation and induces apoptosis via depleting HSP90 
client proteins and downregulation of other downstream pro-
teins in various types of cancer cells in vitro and in vivo (Hos-
tein et al., 2001; Solit et al., 2002; Banerji et al., 2005b; Kark-
oulis et al., 2010). 17-AAG also induces cell cycle arrest in G1 
phase (Solit et al., 2002; Karkoulis et al., 2010). In addition, 
these effects of 17-AAG in cancer cells are similar to those in 
glioma stem cells (Sauvageot et al., 2009). 

17-Dimethylaminoethylamino-17-demethoxygeldanamycin 
(17-DMAG, alvespimycin), an analogue of 17-AAG, is a more 
potent and water-soluble derivative. 17-DMAG binds to ATP 
binding site of HSP90 and inhibits ATP binding and chaperone 
activity of HSP90. Nuclear factor-κB (NF-κB) regulates anti-
apoptotic proteins and oncogenes, such as c-FLIP, Bcl2, Mcl1, 
and XIAP in chronic lymphocytic leukemia (CLL). 17-DMAG 

Table 1. Selected client proteins of HSP90 related with tumor growth and survival

Class
Client protein 

of HSP90
Function References

Receptor 
tyrosine 
kinase

Her2/ErbB2 Promotes cell proliferation and inhibits apoptosis Moasser, 2007 
EGFR mutant Promotes cell proliferation via activation of MAPK, AKT and JNK 

pathway
Voldborg et al., 1997 

FLT3 Regulates cell survival, proliferation and differentiation Grafone et al., 2012 
VEGFR Promotes vasculogenesis and angiogenesis Kliche and Waltenberger, 

2001 
Signaling 

molecule and 
Kinase

Akt Plays a role in apoptosis, cell proliferation, transcription and cell 
migration

Yoeli-Lerner and Toker, 
2006 

mTOR Regulates cell proliferation, motility and survival Guertin and Sabatini, 2007 
p38 Regulates cell proliferation, apoptosis and motility Koul et al., 2013 
v-Src Promotes formation of cancer, cell movement and proliferation Irby and Yeatman, 2000 
Raf-1 Activates cell growth signaling, such as MEK1/2 and ERK1/2 Leicht et al., 2007 
b-Raf
JAK2 Promotes cell proliferation and motility Xu et al., 2017 
Bcr-Abl Promotes cell proliferation and reduces apoptosis Quintas-Cardama and 

Cortes, 2009 
Transcription 

factor 
Twist1 Promotes cancer metastasis and reduces apoptosis Puisieux et al., 2006 
Hif-1α Induce cell proliferation and angiogenesis Tiburcio et al., 2014 
NF-κB Keeps cell proliferation and protects from apoptosis Xia et al., 2014 
p53 mutant Transactivates growth-promoting and oncogenic genes Ozaki and Nakagawara, 

2011 
Others Cyclin D1 Controls cell cycle Qie and Diehl, 2016 

VDUP-1 Inhibits cell growth and metastasis and contributes to apoptosis Kaimul et al., 2007 
MUC1 Prevents cell death and promotes proliferation and invasion Nath and Mukherjee, 2014 
MMP2/9 Plays a role in invasion and angiogenesis via breakdown of 

extracellular matrix
Gialeli et al., 2011 

Survivin Inhibits apoptosis and regulates mitosis Mita et al., 2008 
Vimentin Increases migration and invasive capacity Satelli and Li, 2011 
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induces degradation of IκB kinase (IKK) and suppresses 
DNA binding of NF-κB. Consequently, 17-DMAG decreases 
transcription of NF-κB target genes and induces apoptosis 
(Hertlein et al., 2010). Her2/ErbB2 overexpression enhanc-
es cell growth and motility in breast and ovarian cancer. 
17-DMAG-mediated HSP90 inactivation leads to degradation 
of Her2/ErbB2 (Niu et al., 2009). In non-small cell lung cancer 
(NSCLC), 17-DMAG treatment induces down-regulation of 
phospho-EGFR, phospho-Akt, and phospho-MAPK in EGFR-
mutant cell lines than EGFR-WT cell line, and promotes cell 
apoptosis in EGFR-mutant cells (Kobayashi et al., 2012). In 
hepatocellular carcinoma cells, 17-DMAG induces apoptosis 
by degradation of survival-related proteins (Leng et al., 2012).

IPI-504 (retaspimycin hydrochloride) is a water-soluble 
analogue of 17-AAG and interacts with the ATP binding site 
of HSP90. IPI-504 inhibits myeloma tumor growth and has 
selective cytotoxicity to myeloma cancer cells compared with 
normal cells (Sydor et al., 2006). IPI-504 has anti-proliferation 
activity in several cancer cells through Her2/ErbB2 and Akt 
degradation. Tumor growth in vivo is also reduced by IPI-
504 treatment through Her2/ErbB2 degradation (Leow et al., 
2009). In diffuse large B-cell lymphoma (DLBCL) cell lines, 
IPI-504 inhibits cell growth and induces apoptosis. Among 
these cell lines, IPI-504-sensitive cell lines have high expres-
sion levels of phospho-Akt (Abramson et al., 2009).

Non-ansamycins
AUY992 (luminespib) binds to the ATP binding site in the 

N-domain of HSP90. AUY992 inhibits cell proliferation and in-
duces G1/G2 cell cycle arrest and apoptosis in vitro. Further-
more, AUY992 inhibits growth and lung metastasis of b-Raf-
mutated human melanoma tumor in vivo (Eccles et al., 2008). 
p23 is a co-chaperone of HSP90 and plays an important role 
in the activity of HSP90 and stabilization of client proteins by 
association with HSP90, and HSP90-p23 interaction requires 
ATP binding in HSP90 (Sullivan et al., 2002). In a Her/ErbB-
overexpressing estrogen receptor (ER)-positive breast cancer 
xenograft model, AUY992 reduces tumor growth by inducing 
dissociation of HSP90-p23 interaction and degradation of cli-
ent proteins (Jensen et al., 2008). AUY992 induces apopto-

sis and depletion of Akt and IKK in acute myeloma leukemia 
(AML) cell lines and primary AML blasts (Walsby et al., 2013). 
AUY992 also inhibits cell growth and motility in hepatocellular 
carcinoma and pancreatic cancer cells and reduces growth 
factor-mediated and angiogenesis-related protein activation 
and vascularization in pancreatic cancer (Moser et al., 2012; 
Cheng et al., 2015). 

BIIB021, an orally available inhibitor of HSP90, binds to the 
ATP binding pocket in the N-domain of HSP90. BIIB021 has 
anti-proliferation activity in various tumor cell lines in vitro and 
inhibits tumor growth in vivo. BIIB021 also induces degrada-
tion of HSP90 client proteins (Lundgren et al., 2009). In CLL 
cells, BIIB021 induces growth inhibition and apoptosis by the 
mitochondrial pathway and degradation of BCR-ABL protein. 
In addition, the BIIB021-induced apoptosis includes an au-
tophagic response such as the formation of autophagosome 
by regulating the mTOR-Ulk1 pathway (He et al., 2016). 17-
AAG and other ansamycin derivatives are inactive in cell lines 
expressing P-glycoprotein (P-gp) and/or multidrug resistance-
associated protein 1 (MRP-1/ABCC1). In contrast, BIIB021 is 
active in these cell lines. Therefore, BIIB021 may be used for 
therapy of tumors protected by multidrug resistant (MDR) pro-
tein (Zhang et al., 2010a).

Debio0932 (CUDC-305) binds to the ATP binding site in the 
N-domain of HSP90. Debio0932 induces degradation of mul-
tiple oncoproteins, such as Akt, Raf-1, and Her2/ErbB2, and 
inhibits cell proliferation in various tissue-derived cancer cell 
lines. In glioblastoma, AML, breast cancer, colorectal cancer, 
and NSCLC mouse models, debio0932 also induces degrada-
tion of client proteins and inhibits tumor growth (Bao et al., 
2009). 

STA-9090 (Ganetespib), a synthetic small molecule inhibi-
tor, binds to the ATP binding site in the N-domain of HSP90 
(Ying et al., 2012). STA-9090 induces proteasome-mediated 
degradation of EGFR, JAK2, and FLT3 which are essential 
for growth and activation of STAT, MAPK, and Akt. In addition, 
STA-9090 induces cell cycle arrest in G1 and G2/M phase 
(Proia et al., 2011). In Her2/ErbB2-positive breast cancer 
cells, STA-9090 inhibits cell proliferation, cell cycle, survival, 
and activation/phosphorylation of Her2/ErbB2. Furthermore, 

Table 2. Selected HSP90 inhibitors

Target Inhibitor References

ATP-binding site Ansamycin
   Geldanamycin Grenert et al., 1997 
   17-AAG (Tanespimycin) Krishnamoorthy et al., 2013 
   17-DMAG (Alvespimycin) Jez et al., 2003 
   IPI-504 (retaspimycin hydrochloride) Sydor et al., 2006 
Non-ansamycin
   AUY922 (Luminespib) Eccles et al., 2008 
   BIIB021 Lundgren et al., 2009 
   HSP990 Menezes et al., 2012 
   Debio0932 (CUDC-305) Bao et al., 2009 
   STA-9090 (Ganetespib) Ying et al., 2012 
   AT13387 (Onalespib) Woodhead et al., 2010 
   SNX-5422 (PF-04929113) Chandarlapaty et al., 2008 

Deacetylation LAQ824 Chen et al., 2005 
Romidepsin Yu et al., 2002 
Vorinostat (SAHA) Bali et al., 2005b 
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the half-life of Her2/ErbB2 protein is decreased by STA-9090 
treatment (Lee et al., 2018). In gastric cancer, STA9090 in-
hibits proliferation and induces G2/M arrest of cell cycle and 
apoptosis. The receptor tyrosine kinase (RTK) signaling path-
way is suppressed by STA-9090 treatment (Lee et al., 2017). 
STA-9090 also inhibits cell growth and induces apoptosis in 
AML and NSCLC (Shimamura et al., 2012; Lazenby et al., 
2015). 

Heat shock protein 990 (HSP990) binds to the ATP binding 
site in the N-domain of HSP90. During in vitro experiments, 
HSP990 inhibits ATPase activity of TNF receptor associated 
protein 1 (TRAP1), a mitochondrial HSP90, by more than 
90%. HSP990 inhibits the activity of HSP90 and growth of 
various types of cancer cell lines and has suppressive activity 
in most various cancer patient-derived tumors ex vivo. In gas-
tric cancer, breast cancer, AML, and NSCLC mouse models, 
HSP990 treatment also suppresses tumor growth (Menezes 
et al., 2012).

KW-2478 binds to HSP90α with high affinity. In multiple my-
eloma, KW-2478 induces degradation of client proteins such 
as FGFR3, c-Raf, and cyclin D1, growth inhibition, and apop-
tosis in vitro and in vivo (Nakashima et al., 2010).

AT13387 (onalespib) has affinity for HSP90 by binding in 
the ATPase site of the N-domain (Woodhead et al., 2010). 
AT13387 suppresses proliferation and survival of cell lines 
from different types of tumors. In glioma cell lines, AT13387 
depletes survival-related client proteins and suppresses their 
downstream signaling pathway. As a result, proliferation, mo-
tility, angiogenesis, and survival are decreased. In NSCLC, 
AT13387 shows long duration of effects in vitro and in vivo 
(Graham et al., 2012; Canella et al., 2017).

SNX-5422/2112 (PF-04928473) binds to the ATP bind-
ing site in the N-domain of HSP90. SNX-5422/2112 induces 
HSP90 client protein degradation, such as Her2/ErbB2, Akt, 
and cyclin D1, and inhibits cell proliferation in Her2/ErbB2-
overespressing breast and ovarian cancers. In the body, SNX-
5422 rapidly converts to SNX-2112, and SNX-2112 accumu-
lates in tumors compared to normal tissues (Chandarlapaty et 
al., 2008). The growth inhibition activity of SNX-2112 is higher 
than 17-AAG in multiple myeloma and other hematologic tu-
mors. In multiple myeloma cells, SNX-2112 induces apoptosis 
by caspase activation and suppresses Akt and ERK activa-
tion. SNX-2112 inhibits tube formation of HUVEC cells by sup-
pression of the eNOS/Akt pathway and osteoclastogenesis of 
multiple myeloma cells by down-regulation of ERK/c-Fos and 
PU.1 (Okawa et al., 2009).

HSP90 INHIBITORS BLOCKING DEACETYLATION 
OF HSP90

The molecular chaperone activity of HSP90 is also con-
trolled by acetylation and deacetylation of K294 and K287 
in the M-domain of HSP90α and HSP90β, respectively (Bali 
et al., 2005a; Scroggins et al., 2007; Nishioka et al., 2008). 
Histone deacetylase 6 (HDAC6) deacetylates K294α/K287β 
of HSP90, and the deacetylated HSP90 acts as a molecular 
chaperone. Acetylation of K294α/K287β decreases the bind-
ing affinity of HSP90 to client proteins and co-chaperones (Bali 
et al., 2005a; Scroggins et al., 2007). In Her2/ErbB2-overex-
pressing breast cancer cell lines, vorinostat (also known as 
suberoylanilide hydroxamic acid (SAHA)) induces apoptosis 

via acetylation of HSP90, which dissociates Her2/ErbB2 from 
HSP90 and promotes polyubiquitinylation and degradation of 
Her2/ErbB2 (Bali et al., 2005b). LAQ824 induces acetylation 
of HSP90 in prostate cancer cells; the ATP binding activity of 
HSP90 is decreased as a result, and the androgen receptor is 
dissociated from HSP90 and degraded. Therefore, LAQ824 
suppresses expression of androgen-induced prostate-specific 
antigen and induces anti-proliferation effects and apoptosis 
in prostate cancer cells. LAQ824 also reduces other HSP90 
client protein levels (Chen et al., 2005). Romidepsin inhibits 
growth and induces apoptosis in wild type or mutant p53-
expressing NSCLS cells. Romidepsin also reduces protein 
levels of ErbB1, ErbB2, Raf-1, and mutant p53, but not wild 
type p53. Romidepsin induces dissociation of mutant p53 and 
Raf-1 from HSP90, which is related with acetylation of HSP90 
(Yu et al., 2002).

CLINICAL TRIALS OF TRADITIONAL HSP90  
INHIBITORS FOR CANCER THERAPY

Since 17-AAG among HSP90 inhibitors first entered the 
clinical trial (Banerji et al., 2005a), many HSP90 inhibitors have 
entered clinical trials and are still underway. The HSP90 inhibi-
tors that have been investigated in clinical trials are presented 
in Table 3. Clinical trials of HSP90 inhibitors were performed 
as HSP90 inhibitor monotherapy or combination therapy with 
other anti-cancer reagents for validation of safety, anti-cancer 
activity, and dosing schedule and dosage. While inhibitors of 
ansamycin and non-ansamycin classes have not been FDA 
approved, romidepsin and vorinostat among HDAC inhibitors 
have been FDA approved.

Another strategy that uses HSP90 in clinical trials is to sup-
press drug resistance using HSP90 inhibitor. Her2/ErbB2 and 
mutated EGFR are one of the proteins that cause drug resis-
tance. Because Her2/ErbB2 and EGFR are clients of HSP90, 
clinical trials with HSP90 inhibitors were designed to over-
come drug resistance by these proteins. In Her2/ErbB2-over-
expressing breast cancer, 17-AAG, STA-9090, and AUY922 
were used in Phase I and II clinical trials to overcome Her2/
ErbB2-mediated resistance to trastuzumab (Herceptin, hu-
manized anti-Her2/ErbB2 monoclonal antibody). The results 
proved that HSP90 inhibition may be used to overcome the 
trastuzumab resistance (Modi et al., 2007; Kong et al., 2016; 
Jhaveri et al., 2017). In addition, to overcome the resistance 
of EGFR mutation-positive lung cancer to erlotinib (Tarceva, 
receptor tyrosine kinase inhibitor), Phase I and II clinical trials 
using AUY922 have been performed (Johnson et al., 2015).

NOVEL CLASS OF HSP90 INHIBITORS INDUCING 
CLEAVAGE OF HSP90

Recently, it has been reported that HSP90 is cleaved by 
various stimuli. Cleavage of HSP90 is induced by various 
stimuli such as UVB irradiation (Chen et al., 2009), ascorbate/
menadione (Beck et al., 2009, 2012), andrographolide (Liu et 
al., 2014), HDAC inhibitors (Park et al., 2015), proteasome in-
hibitors (Park et al., 2017), tumor necrosis factor (TNF) (Fritsch 
et al., 2016), a combination of gefitinib and vorinostat (Park et 
al., 2019), etc. (Table 4). Therefore, cleavage of HSP90 can 
be considered another mechanism of HSP90 regulation.

Biomol  Ther 27(5), 423-434 (2019) 
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HSP90 cleavage can be divided into enzymatic cleavage 
and non-enzymatic cleavage. The enzymatic cleavage gener-
ates an approximately 55 kDa fragment of HSP90 via caspase 
10 activation, and the non-enzymatic cleavage generates an 
approximately 70 kDa fragment via chemical degradation by 
reactive oxygen species (ROS). There are some substances 
that have HSP90 cleavage activity, but it has not yet been de-
termined whether enzymes are engaged in the process.

Chemicals and UV inducing enzymatic cleavage of HSP90
The enzymatic cleavage of HSP90 is induced by histone 

deacetylase inhibitors (including vorinostat), proteasome in-
hibitors (including MG132), and UVB irradiation. We found 
cleavage of HSP90 when treated with the histone deacetylase 
inhibitor vorinostat in leukemia cells (Park et al., 2015). HSP90 
was also cleaved by other histone deacetylase inhibitors, so-
dium butyrate and valproic acid (Park et al., 2015). Vorino-
stat induces ROS generation in acute T cell leukemia cell line 

Table 3. Clinical trials of anti-cancer therapy with HSP90 inhibitors

HSP90 inhibitor Phase Tumor type Reference

17-AAG
   (Tanespimycin)

I Relapsed or refractory acute myeloid leukemia Walker et al., 2013 
II Metastatic or locally advanced, unresectable breast cancer Rajan et al., 2011 
II Metastatic melanoma Solit et al., 2008 ; Pacey et al., 2012
I Solid tumor Tse et al., 2008 
I b-Raf or NRAS mutated melanoma Banerji et al., 2008 
I Relapsed / refractory pediatric solid tumor Weigel et al., 2007 
I Refractory advanced cancer Ramanathan et al., 2005 

I/II Relapsed or relapsed and refractory multiple myeloma Richardson et al., 2011 
I Relapsed multiple myeloma Richardson et al., 2010 
I Her2/ErbB2-overexpressed breast cancer Modi et al., 2007 

17-DMAG
   (Alvespimycin)

I Chronic lymphocytic leukemia/small lymphatic lymphoma Maddocks et al., 2016 
I Advanced solid tumor Pacey et al., 2011; Jhaveri et al., 2012
I Acute myeloma leukemia Lancet et al., 2010 
I Advanced malignancies Kummar et al., 2010 

AUY922
   (Luminespib)

IB/II Her2/ErbB2-positive metastatic breast cancer Kong et al., 2016 
II Advanced pancreatic cancer Renouf et al., 2016 
II Gastrointestinal stromal cancer Bendell et al., 2016 
I Advanced solid tumor Sessa et al., 2013; Doi et al., 2014; 

   Bendell et al., 2015
I/II EGFR-mutant lung cancer Johnson et al., 2015 
I/IB Multiple myeloma Seggewiss-Bernhardt et al., 2015 

BIIB021 I Advanced solid tumor Saif et al., 2014 
I Refractory metastatic or locally advanced solid tumor Hong et al., 2013 
II Gastrointestinal stromal tumor Dickson et al., 2013 

Debio0932
   (CUDC-305)

I Advanced cancer Isambert et al., 2015 

STA-9090
   (Ganetespib)

I Her2/ErbB2-positive metastatic breast cancer Jhaveri et al., 2017 
II Metastatic castrate-resistant prostate cancer Thakur et al., 2016 
II Non-small cell lung cancer Ramalingam et al., 2015 
II KRAS mutated and WT metastatic colorectal cancer Cercek et al., 2014 
I Advanced hepatocellular carcinoma Goyal et al., 2015 
II Metastatic breast cancer Jhaveri et al., 2014 
II Advanced non-small lung cancer Socinski et al., 2013 
I Solid malignancies Goldman et al., 2013 

HSP990 I Advanced solid malignancies Spreafico et al., 2015 
KW-2478 I/II Multiple myeloma Cavenagh et al., 2017 

I B-cell malignancies Yong et al., 2016 
LAQ824 I Advanced solid tumor de Bono et al., 2008 
AT13387 (Onalespib) I Advanced solid tumor Do et al., 2015; Shapiro et al., 2015 
IPI-504 (Retaspimycin 
   hydrochloride)

I Gastrointestinal stromal cancer, soft-tissue sarcoma Wagner et al., 2013 
II Castrate-resistant prostate cancer Oh et al., 2011 

Romidepsin II Metastatic castrate-resistant prostate cancer Molife et al., 2010 
SNX-5422
   (PF-04929113)

I Refractory solid tumor Infante et al., 2014 
I Refractory solid tumor malignancies and lymphomas Rajan et al., 2011 

Vorinostat (SAHA) I/II Locally advanced breast cancer Tu et al., 2014 
I/II Metastatic breast cancer Ramaswamy et al., 2012 
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(Ruefli et al., 2001). On the other hand, generation of ROS 
by several stimuli leads to activation of caspase and triggers 
apoptosis in various types of cancer cells through an extrinsic 
or intrinsic pathway (Kim and Chung, 2007). According to our 
results, ROS-induced caspase 10 activation is responsible for 
enzymatic cleavage of HSP90 after treatment with vorinostat 
(Park et al., 2015). Furthermore, vorinostat-induced HSP90 
cleavage needs newly synthesized protein(s), and Vitamin D 
up-regulating protein 1 (VDUP-1) may be one of the candidate 
substances (Park et al., 2015). Vorinostat was previously re-
ported to increase the expression level of the VDUP-1 gene 
(Butler et al., 2002), and VDUP-1 negatively regulates thiore-
doxin, a cellular antioxidant (Junn et al., 2000).

We also found that MG132, a proteasome inhibitor, induces 
HSP90 cleavage through a mechanism similar to that of vori-
nostat treatment (Park et al., 2017). Although the mRNA level 
of VDUP-1 was not changed after treatment with MG132, the 
protein level of VDUP-1 was significantly increased. E3 ubiq-
uitin ligase Itch-mediated ubiquitination and proteasomal deg-
radation is involved in the regulation of VDUP-1 protein level 
(Zhang et al., 2010b). Therefore, MG132 may up-regulate the 
VDUP-1 protein level by inhibiting the proteasome activity and 
blocking the proteasomal degradation of VDUP-1. Another an-
tioxidant glutathione was also decreased by MG132 treatment. 
In short, MG132 also induces HSP90 enzymatic cleavage via 
generation of ROS and subsequent activation of caspase 10.

UVB irradiation induces HSP90 cleavage by activating the 
Fas/Fas ligand axis (Chen et al., 2009). In this case, Fas li-
gand secretion and Fas expression were increased by UVB 
irradiation. Caspase 8 was activated by interaction with the 
FADD domain of active Fas, and HSP90 was cleaved by cas-
pase 8-mediated active caspase 10. Importantly, apoptosis of 
cells increased when HSP90 was down-regulated and cells 
harboring mutation on the cleavage site of HSP90 showed 
better survival compared with control cells upon UVB irradi-
ation. Therefore, it is likely that the HSP90 cleavage is not 
merely a side effect of caspase activation but an essential pro-
cess for the regulation of apoptosis.

Chemicals inducing non-enzymatic cleavage of HSP90
In leukemia cells (K562 cell line), ascorbate/menadione 

(asc/men) treatment induces HSP90 cleavage with a molec-
ular weight of approximately 70 kDa. The HSP90 cleavage 
is selectively induced in tumor cells, but not in normal cells. 
The asc/men-induced HSP90 cleavage triggers degradation 
of HSP90 client proteins, including Bcr-Abl, and the cleavage 

of HSP90 is induced by ROS generation and inhibited by anti-
oxidant (Beck et al., 2009). The cleavage of HSP90 is induced 
by Fenton reaction in the presence of redox-active iron. The 
cleavage site in this reaction is between I131 and G132 in 
HSP90α and I126 and G127 in HSP90β (Beck et al., 2012).

In Jurkat cells, oxidative stress (H2O2) induces iron-depen-
dent HSP90 cleavage with a molecular weight of approximate-
ly 70 kDa, and the HSP90 cleavage inversely correlates with 
cell proliferation. Cleaved HSP90 accumulates as aggregates 
in an insoluble form, and actin also aggregates in sequence. 
Using a cell-free in vitro model, it was proved that the cleaved 
HSP90 gains another function to directly induce aggregation 
of actins (Castro et al., 2019).

Others inducing cleavage of HSP90
TNF induces HSP90 cleavage depending on Cathepsin 

D (CtsD). TNF treatment in U937 (human myeloid leukemia) 
cells induced HSP90 cleavage in a time-dependent manner, 
which was blocked by treatment with pepstatin A (PepA), a 
CtsD inhibitor. In this case, HSP90 was observed to be cleaved 
into 60 kDa and 40 kDa fragments and it was concluded us-
ing the mutagenesis technique that the 465th tyrosine residue 
may be the target of HSP90 cleavage. Apoptosis of U937 cells 
expressing mutant HSP90 (Y465W) by TNF was decreased 
compared to control U937 cells (Fritsch et al., 2016). 

Andrographolide (andro), a diterpenoid lactone isolated 
from Andrographis paniculata, has anti-inflammatory activity 
and inhibits cell transformation through v-Src degradation (Li-
ang et al., 2008). When temperature-sensitive v-Src-express-
ing cell line (ts-v-Src; RK3E cell line) was treated with andro, 
40 kDa fragments of HSP90 were also detected with v-Src 
degradation. Andro-induced HSP90 cleavage was related 
with a decrease of v-Src and cell apoptosis. In this phenom-
enon, andro-mediated ROS generation plays an important 
role in HSP90 cleavage and v-Src suppression. Furthermore, 
in leukemia cells, andro-induced HSP90 cleavage was cor-
related with BCR-ABL down-regulation and apoptosis (Liu et 
al., 2014).

The novel anti-cancer drug β-Lapachone (β-lap) induces 
HSP90 cleavage in NAD(P)H:quinone oxidoreductase-1 (NQO1)-
expressing lung and prostate cancer cells and HUVEC cells. The 
cleavage of HSP90 is induced by β-lap-mediated ROS genera-
tion, and the cleavage of HSP90 and down-regulation of client 
proteins are restored by antioxidant treatment. NQO1-mediated 
activation of β-lap triggers a futile cycle, and NQO1-depedent qui-
nones cannot cleave HSP90, unlike β-lap. Therefore, the futile re-

Table 4. Novel class of HSP90 inhibitors inducing cleavage of HSP90

Cleavage type Inhibitor References

Enzymatic cleavage Histone deacetylase inhibitors Park et al., 2015 
Proteasome inhibitors Park et al., 2017 
Ultra-violet irradiation Chen et al., 2009 

Non-enzymatic cleavage Ascorbate/Menadione Beck et al., 2009, 2012
Oxidative stress (H2O2) Castro et al., 2019 

Others (undefined) Tumor necrosis factor (TNF) Fritsch et al., 2016 
Andrographolide Liu et al., 2014 
β-Lapachone Wu et al., 2016 
17-AAG (Tanespimycin) Karkoulis et al., 2010 
As(III) and MMA(III) Shen et al., 2008 
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dox cycle of β-lap may generate ROS, and the chemical structure 
of β-lap is a critical factor for HSP90 cleavage (Wu et al., 2016).

As described earlier, 17-AAG inhibits HSP90 by binding to 
the ATP-binding pocket of HSP90. In human urinary bladder 
cancer cells, 17-AAG induces cell apoptosis and down-regu-
lation of client proteins, and the cleavage of HSP90 was also 
examined (Karkoulis et al., 2010). The detailed action mecha-
nism involved in 17-AAG has not been defined yet.

Arsenic compounds arsenite (As(III)) and monomethylar-
sonous acid (MMA(III)) induce ROS-mediated apoptosis and 
HSP90 cleavage. It was reported that the NADPH inhibitor, 
diphenyleneiodonium chloride (DPI), inhibit As(III)-induced 
apoptosis and that HSP90 cleavage is also reduced by 
DPI treatment. In addition, JNK inhibitor, SP600125, blocks 
HSP90 cleavage, whereas the ERK inhibitor PD98059 does 
not. Therefore, As(III) and MMA(III) induce HSP90 cleavage 
via NADPH and JNK activation, thereby inducing cell apopto-
sis (Shen et al., 2008).

CONCLUSIONS

HSP90 is a molecular chaperone that supports folding and 
stabilization of the client proteins. Likely because many client 
proteins of HSP90 are required for cancer cell survival and 
growth, most cancer cells express HSP90 more highly than 
normal cells (Ferrarini et al., 1992; Sharp and Workman, 2006; 
Neckers and Workman, 2012; Miyata et al., 2013). Various in-
hibitors of HSP90 have been studied as anticancer drugs and 
clinical trials are underway. Most of the traditional inhibitors 
target ATP binding or deacetylation of HSP90, and thereby 
block the molecular chaperone activity of HSP90, resulting 
in degradation of the client proteins and increased cell death 

in cancer cells. Recently, several studies including ours have 
shown that the cleavage of HSP90 is correlated with degra-
dation of client proteins and directly or indirectly affects the 
survival and growth of cancer cells (Shen et al., 2008; Chen et 
al., 2009; Liu et al., 2014; Fritsch et al., 2016; Wu et al., 2016). 
In addition, HSP90 cleavage inducing reagents, such as β-lap 
and vorinostat (Ramaswamy et al., 2012; Tu et al., 2014; Park 
et al., 2015; Wu et al., 2016), are also used for anti-cancer 
therapy. Therefore, it can be carefully postulated that chemi-
cals inducing HSP90 cleavage may have anticancer activity. 
Taken together, the present results show that HSP90 cleavage 
may be another mechanism of HSP90 inhibitors and targeting 
of HSP90 cleavage is potentially another strategy for cancer 
chemotherapy (Fig. 1). We are presently screening chemicals 
that can induce HSP90 cleavage and are planning to verify 
whether they have anticancer activity when used alone or in 
combination. The results can be helpful to understand the 
mechanism of HSP90 inhibition in several aspects and may 
provide novel candidate drugs for cancer therapy.
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