• Title/Summary/Keyword: Natural Modes

Search Result 693, Processing Time 0.022 seconds

Transverse Vibration of Rectangular Plates Having an Inner Cutout in Water (유공직사각형평판(有孔直四角形平板)의 접수진동(接水振動))

  • H.S.,Lee;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 1984
  • This paper is concerned with the experimental investigation of transverse vibration characteristics in water of rectangular plates having an inner free cutout. Systematic experiments are carried out to investigate effects of the surrounding water on the added mass and the natural frequency of the plates due to the changes of the aspect ratio, hole size and eccentricity. The main subject is the clamped rectangular plate with a circular hole. For the purpose of comparative evaluations, some other common-type boundary conditions and hole shapes such as ellipses and rectangles are also investigated. Some of the results obtain are as follows; 1) For each given aspect ratio of the plate, there is a hole area ratio which gives a minimum value of the nondimensional frequency parameter for each mode. The hole area ratio increases as the order number of the mode increases. 2) The nondimensinal mass-increment parameter decreases as the aspect ration or the order number of the mode increases. For each given aspect ratio, the parameter the fundamental mode decreases monotonically as the hole area ratio increase. In cases of the second and higher order modes, however, each mode has a hole area ratio which gives a maximum value of the parameter for each aspect ratio more then 2/3. 3) Comparing elliptic holes with rectangular ones with same hole area ratio, nondimensional frequency parameters are almost same for each given ratio of the shorter axises to the longer one. 4) The influences of difference in boundary condion on nondimensional frequency parameters in water are similar to those in air.

  • PDF

Finite Element Solution of Helmholtz Equation for Free Harbor Oscillation (항만 고유 진동 해석을 위한 Helmholtz 방정식의 유한요소 해법)

  • Ryu, Yeon Sun;Lee, Byung Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • For the numerical analysis of free oscillation characteristics in a harbor with general boundary and bottom topography, finite element method is applied. The governing Helmholtz equation is transformed into a generalized matrix eigenvalue problem using the standard finite element procedure. A computer code is developed for the numerical evaluation of natural frequencies and free oscillation modes. In the eigensolution process, a shifting strategy is devised for the treatment of numerical singularity. Scaling of coefficient matrix is also found to be effective for the alleviation of numerical ill-conditioning. For the test problems, firstly, analytical and numerical solutions are compared and validity of the code is obtained. Hence the method is successfully applicable for the real-world problems with general geometric boundaries and bottom topography.

  • PDF

A theoretical calculation of coupled free, transverse vibration of the multi-supported shaft system by the finite element method (유한요소법에 의한 다점지지축계의 연성자유횡진동 계산에 관한 연구)

  • 유광택;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.41-49
    • /
    • 1986
  • With the trend towards high propulsive level, increasing ship's dimensions and heavier shaft systems supported by the hull structure of relatively stiffness in modern ships, transverse vibrations of propulsion shaft system have become one of the problems that should be predicted in the early design stage. Regarding transverse vibrations, coupling terms such as oilfilm, gyroscope and hydrodynamic effect of the propeller exist between the vertical and horizontal vibration, furthermore for the shaft system with strut and bossing its physical properties incorporated with hull structure must be considered. In order to predict the transverse vibratory condition of the propulsion shaft and take some appropriate countermeasures, it is necessary to make a fairly strict estimation of the vibratory behaviours of it. In this paper, theoretical approach using the finite element method is investigated to calculate natural frequencies and vibration modes for coupled free transverse vibrations of shaft system in two planes. Based on the method investigated a digital computer program is developed and is applied to calculate the above-mentioned vibrations of an experimental model shaft system. The results of the calculation are compared with those of the experimental measurements and they show an acceptable agreement.

  • PDF

Design of Multi-Input Multi-Output Positive Position feedback Controller based on Block-Inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.508-514
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi input and multi output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments..

  • PDF

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira;Choi, A Young;Ahn, Soo-Yeon;Choi, Kwon-Young;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge

  • Casciati, F.;Casciati, S.;Elia, L.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2016
  • The ambient vibration measurement is an output-data-only dynamic testing where natural excitations are represented, for instance, by winds and typhoons. The modal identification involving output-only measurements requires the use of specific modal identification techniques. This paper presents the application of a reliable method (the Stochastic Subspace Identification - SSI) implemented in a general purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment of a reduced number of sensors across a large civil engineering structure for the validation of its modal identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors even for a reduced number of sensors, without any significant loss of accuracy.

Numerical Analysis Study on Damping Performance of Cable Damper (케이블댐퍼 감쇠성능의 수치해석적 연구)

  • Yhim, Sung-Soon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Compared with a strong axial rigidity due to large intial tension, cable has a weak laterally flexural rigidity. A variety of dynamic loads such as traffic loads and wind loads etc. cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables. Therefore, vibration reduction design is an urgent task to control the vibration of cable-supported bridges. Because a various kind of dampers have shown to reduce the amplitude and duration time of vibration of cable from measured date in field test, damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable. Vibration characteristics of cable can change according to manufacturing method and type of established form, and damper has been designed according to distribution of natural frequencies and vibration modes. In this study, numerical analysis is used to show the reduction effects of vibrations and present the design of damper for vibration reduction of cable.

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.