DOI QR코드

DOI QR Code

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T. (Graduate School of Design and Architecture, Nagoya City University) ;
  • Sabia, D. (Department of Structural and Geotechnical Engineering, Politecnico di Torino)
  • Received : 2005.03.04
  • Accepted : 2005.09.01
  • Published : 2005.11.30

Abstract

Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

Keywords

References

  1. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), 'Analysis of thick and thin shell structures by curved finite elements', Int. J. Numer. Meth. Eng., 2, 419-451 https://doi.org/10.1002/nme.1620020310
  2. Andersen, P., Brincker, R. and Kirkegaard, P.H. (1996), 'Theory of covariance equivalent Armav models of civil engineering structures', Proc. of the 14th Int. Modal Analysis Conf. (1MAC), Dearborn, Michigan, 518-524
  3. Andersen, P. and Kirkegaard, P.H. (1998), 'Statistical damage detection of civil engineering structural using Armav models', Proc. of the 16th Int. Modal Analysis Conf. (MAC), Santa Barbara, California, 356-362
  4. Anthoine, A. (1995), 'Numerical simulations of tests performed on a masonry building prototype', Experimental and Numerical Investigation on a Brick Masonry Building Prototype - Numerical Prediction of the Experiment, Report 3.0, GN.D.T., Pavia
  5. Aoki, T., Kato, S., Ishikawa, K., Hidaka, K., Yorulmaz, M. and Cili, F. (1997), 'Principle of structural restoration for Hagia Sophia dome', Structural Studies, Repairs and Maintenance of Historical Buildings V, 467-476
  6. Aoki, T. (2001), 'Formulation of elastic-plastic joint elements and their application to practical structures', Computational Modelling of Masonry, Brickwork and Blockwork Structures, ed. by Bull, J.W., Saxe-Coburg Publications, 27-52
  7. Aoki, T., Carpentieri, D., De Stefano, A., Genovese, C. and Sabia, D. (2001), 'Analisi sismica di parete in muratura: Metodi e tecniche a confronto', Proc. of X convegno nazionale ANIDIS on Vingegneria sismica in Italia, Potenza, 1-12 (CD-ROM) (in Italian)
  8. Aoki, T. and Sato, T. (2003a), 'Application of Bott-Duffin inverse to static and dynamic analysis of masonry structures', Structural Studies, Repairs and Maintenance of Heritage Architecture VIII, WIT Press/ Computational Mechanics, 277-286
  9. Aoki, T. and Sabia, D. (2003b), 'Collapse analysis of masonry arch bridges', Proc. of the Ninth Int. Conf. on Civil and Struct. Eng. Comp., Egmond aan Zee, The Netherlands, September, 1-14 (CD-ROM)
  10. Aoki, T. (2004), 'Brick chimneys in Tokoname', Invitation to Design and Architecture VIII, Gifu Newspaper Inc., 166-198 (in Japanese)
  11. Aoki, T. and Sabia, D. (2004), 'Theoretical and experimental analysis of brick chimneys, Tokoname, Japan', Computational Mechanics, Proc. of WCCM VI in Conjunction with APCOM'04, Beijing, September, 1-12 (CD-ROM)
  12. De Stefano, A., Sabia, D. and Sabia, L. (1997), 'Structural identification using ARMAV models from noisy dynamic response under unknown random excitation', Proc. of DAMAS Int. Conf, Sheffield, 419-428
  13. De Stefano, A., Ceravolo, R. and Sabia, D. (2001), 'Output only dynamic identification in time-frequency domain', Proc. of 2001 American Control Conf, Arlington
  14. Eurocode n.8 (2003), 'Design of structures for earthquake resistance', European standard prEN 1998-1, Doc CEN/TC250/SC8/N335
  15. Gambarotta, L. and Lagomarsino, S. (1997a), 'Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications', Earthq. Eng. Struct. Dyn., 26, 423-439 https://doi.org/10.1002/(SICI)1096-9845(199704)26:4<423::AID-EQE650>3.0.CO;2-#
  16. Gambarotta, L. and Lagomarsino, S. (1997b), 'Damage models for the seismic response of brick masonry shear walls. Part II: The continuum model and its applications', Earthq. Eng. Struct. Dyn., 26, 441-462 https://doi.org/10.1002/(SICI)1096-9845(199704)26:4<441::AID-EQE651>3.0.CO;2-0
  17. Garibaldi, L., Giorcelli, E., Marchesiello, S. and Ruzzene, M. (1999), 'CVA-BR against ARMAV: comparison over real data from an ambient noise excited bridge', Key Engineering Materials, 167-168, 423-431 https://doi.org/10.4028/www.scientific.net/KEM.167-168.423
  18. Garibaldi, L., Marchesiello, S., Giorcelli, E. and Gorman, D.J. (2001), 'CVA and ARMAV: performance comparison over real data', J. Intelligent Material Systems and Structures, 12(8), 577-588 https://doi.org/10.1177/10453890122145357
  19. Giorcelli, E., Garibaldi, L. and Piombo, B. (1998), 'ARMAV techniques for traffic excited bridges', ASME J. Vibration and Acoustics, July, 713-718
  20. Hinton, E. and Owen, J. (1984), Finite Element Software for Plates and Shells, Pineridge Press
  21. Hughes, T.J.R. and Cohen, M. (1978), 'The 'Heterosis' finite element for plate bending', Comput. Struct., 9, 445-450 https://doi.org/10.1016/0045-7949(78)90041-X
  22. Hughes, TJ.R. and Hinton, E. (1986), Finite Element Methods for Plates and Shell Structures - Vol. I Element Technology, Pineridge Press
  23. Kato, S., Hidaka, K. and Aoki, T. (1986), 'A study on the formulation of a elastic-plastic joint element by truss elements - An application of the theory of effective strength', Trans, of A.I.J., 370, 50-59 (in Japanese)
  24. Kupfer, H., Hilsdorf, K.H. and Rush, H. (1969), 'Behavior of concrete under biaxial stresses', ACI J., 66(8), 656-666
  25. Kupfer, H. and Gerstle, K.H. (1973), 'Behavior of concrete under biaxial stresses', J. of the Eng. Mech. Div, ASCE, 99(EM4), 853-866
  26. Lourenco, P.B., Rots, J.G and Blaauwendraad, J. (1995), 'Two approaches for the analysis of masonry structures: Micro and macro-modeling', HERON, 40(4), 313-340
  27. Magenes, G, Calvi, GM. and Kingsley, R. (1995), 'Seismic testing of a full-scale, two-story masonry building: test procedure and measured experimental response', Experimental and Numerical Investigation on a Brick Masonry Building Prototype - Numerical Prediction of the Experiment, Report 3.0, GN.D.T., Pavia
  28. Magenes, G and Calvi, GM. (1997), 'In-plane seismic response of brick masonry walls', Earthq. Eng. Struct. Dyn., 26, 1091-1112 https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1091::AID-EQE693>3.0.CO;2-6
  29. Marple, L. Jr. (1987), Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs
  30. Olafsson, S. and Sigbjornsson, R. (1995), 'Application of ARMA models to estimate earthquake ground motion and structural response', Earthq. Eng. Struct. Dyn., 24, 951-966 https://doi.org/10.1002/eqe.4290240703
  31. Page, A.W. (1981), 'The biaxial compressive strength of brick masonry', Proc. Intsn. Civ. Engrs., Part 2, 71, 893-906
  32. Page, A.W. (1983), 'The strength of brick masonry under biaxial compression-tension', Int. J. Masonry Constr., 3(1), 26-31
  33. Peeters, B. and De Roeck, G (2001), 'Stochastic system identification for operational modal analysis: A review', J. Dynamic Systems, Measurement, and Control, 123, 1-9 https://doi.org/10.1115/1.1349884
  34. Sabia, D., Bonisoli, E., Fasana, A., Garibaldi, L. and Marchesiello, S. (2003), 'Advances in identification and fault detection in bridge structures', Key Engineering Materials, 245-246, 339-350 https://doi.org/10.4028/www.scientific.net/KEM.245-246.339
  35. Tokoname City web site, http://www.city.tokoname.aichi.jp/html/intro_e/top.html
  36. Zienkiewicz, O.C. (1971), The Finite Element in Engineering, McGraw-Hill

Cited by

  1. Structural Identification: Opportunities and Challenges vol.139, pp.10, 2013, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000723
  2. Model Updating to Forecast the Dynamic Behavior of the Ghirlandina Tower in Modena, Italy vol.19, pp.1, 2015, https://doi.org/10.1080/13632469.2014.962668
  3. Toward effective structural identification of medium-rise building structures vol.8, pp.1, 2018, https://doi.org/10.1007/s13349-017-0259-y
  4. Comparison and Implementation of Multiple Model Structural Identification Methods vol.141, pp.11, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001284
  5. Influence of experimental data and FE model on updating results of a brick chimney vol.39, pp.4, 2008, https://doi.org/10.1016/j.advengsoft.2007.01.005
  6. A machine learning approach for the automatic long-term structural health monitoring pp.1741-3168, 2019, https://doi.org/10.1177/1475921718779193
  7. Robust finite element model updating of a large-scale benchmark building structure vol.43, pp.3, 2012, https://doi.org/10.12989/sem.2012.43.3.371
  8. ESTIMATION OF VIBRATION CHARACTERISTICS OF A LIGHTHOUSE BY MICROTREMOR MEASUREMENTS vol.21, pp.47, 2015, https://doi.org/10.3130/aijt.21.71