• Title/Summary/Keyword: pushover analysis

Search Result 321, Processing Time 0.02 seconds

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

Lateral Load Distribution Factor for Modal Pushover Analysis (고차모드 영향이 반영된 Pushover 해석을 위한 횡하중 분배계수 제안)

  • Kim, Geon-Woo;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.236-243
    • /
    • 2005
  • Nonlinear static analysis is used to quantify the resistance of the structure to lateral deformation and to gauge the mode of deformation and intensity of local demands. A simple method for the nonlinear static analysis of complex building structures subjected to monotonically increasing horizontal loading(pushover analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. A variety of existing pushover analysis procedures are currently being consolidated under programs such as ATC 40 and FEMA 273. And various techniques have been recommended, including the use of constant lateral force profiles and the use of adaptive and multimodal approaches. In this paper a modal pushover analysis using design response spectra of UBC 97 is proposed. Proposed method is compared against the method in FEMA 273 and ATC 40, and results of time history analysis.

  • PDF

Application of Modal Pushover Analysis for Deformation Capacity Evaluation of Steel Moment Frames (철골구조물의 변형능력평가를 위한 MPA 방법의 적용성 검토)

  • 최원호;김기주;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.266-273
    • /
    • 2002
  • Pushover analysis is frequently used for evaluation of seismic performance and determination of seismic demand of a building structure in the current structural engineering practice field. However, pushover analysis has a advantage for estimation of seismic demands, which cannot account for the contributions of higher modes to response or for a redistribution of inertia forces because of structural yielding and the associated changes in the vibration properties of the structures. Recently, Chopra and Coel(2001) derived uncoupled inelastic dynamic equation of motion with several assumptions in the pushover analysis. By using this approach, pushover analysis for each mode is carried out and modal pushover analysis method, which can consider higher mode effects of the building, was suggested. The principle objective of this study is to introduced the modal pushover analysis by Chopra et al.(2001) and investigated the applicability and validity of this method for the steel moment frames subjected to various earthquake ground motions.

  • PDF

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.

Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

  • Landi, Luca;Pollioa, Bernardino;Diotallevi, Pier Paolo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.433-446
    • /
    • 2014
  • The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records and increasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

A new lateral load pattern for pushover analysis in structures

  • Pour, H. Gholi;Ansari, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.437-455
    • /
    • 2014
  • Some conventional lateral load patterns for pushover analysis, and proposing a new accurate pattern was investigated in present research. The new proposed load pattern has load distribution according weight and stiffness variation in height and mode shape of structure. The assessment of pushover application with mentioned pattern in X type braced steel frames and steel moment resisting frames, with stiffness and mass variation in height, was studied completely and the obtained results were compared with nonlinear dynamic analysis method (including time history analysis). The methods were compared from standpoints of some basic parameters such as displacement, drift and shape of lateral load pattern. It is concluded that proposed load pattern results are closer to nonlinear dynamic analysis (NDA) compared to other pushover load patterns especially in tall and medium-rise buildings having different stiffness and mass during the height.

Efficacy of pushover analysis methodologies: A critical evaluation

  • Dutta, Sekhar Chandra;Chakroborty, Suvonkar;Raychaudhuri, Anusrita
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2009
  • Various Pushover analysis methodologies have evolved as an easy as well as designers-friendly alternative of nonlinear dynamic analysis for estimation of the inelastic demands of structures under seismic loading for performance based design. In fact, the established nonlinear dynamic analysis to assess the same, demands considerable analytical and computational background and rigor as well as intuitive insight into inelastic behavior for judging suitability of the results and its interpretation and hence may not be used in design office for frequent practice. In this context, the simple and viable alternative of Pushover analysis methodologies can be accepted if its efficacy is thoroughly judged over all possible varieties of the problems. Though this burning issue has invited some research efforts in this direction, still a complete picture evolving very clear guidelines for use of these alternate methodologies require much more detailed studies, providing idea about how the accuracy is influenced due to various combinations of basic parameters regulating inelastic dynamic response of the structures. The limited study presented in the paper aims to achieve this end to the extent possible. The study intends to identify the range of applicability of the technique and compares the efficacy of various alternative Pushover analysis schemes to general class of problems. Thus, the paper may prove useful in judicial use of Pushover analysis methodologies for performance based design with reasonable accuracy and relative ease.