본고에서는 무리수 개념 발생을 대수적인 측면과 기하적인 측면에서 고찰하고, 제7차 교육과정과 교과서에서 무리수를 어떻게 다루고 있는지를 살펴본다. 그 결과로 무리수 개념 발생의 본질적 요소인 통약불가능성이 드러나지 않고 있음은 물론, 유리수 개념과의 내적 연결성도 미약함을 알 수 있었다. 따라서 유리수의 본질적 개념과 연결 지어 중학교 단계에서 작도 등을 활용하여 무리수의 본질적인 개념을 관계적으로 이해시킬 수 있는 지도 방안을 제안한다.
Throughout this paper, we will work in the category of compact connected manifolds and continuous maps. If $X_1, X_2$ are manifolds, $f, g: X_1 \to X_2$ are maps, then a point $x \in X_1$ is a coincidence of f and g iff f(x) = g(x) ; the set of all such points is denoted by Coin(f,g).
1997년부터 도로명을 기준으로 주소를 나타내는 법적 근거가 마련되었다. 지번 방식의 주소에서 도로의 왼쪽에 위치한 건물에 홀수번호를 오른쪽에 위치한 건물에는 짝수번호를 부여하는 도로명 기준의 주소로 변화하는 것이다. 사람들이 거주하는 지역에 대해서는 도로명주소에 의한 위치표시는 가능하나, 전 답 산악 지역에 대한 위치표시체계는 미흡하여 범죄와 응급 구조에 신속히 대처할 수 없다. 이러한 비거주지역에서의 위치찾기 어려움의 도로명주소 약점을 보완하기 위해 국가지점번호가 도입되었다. 연구의 목적은 국가지점번호 도입을 돕기 위함이다. 본 연구에서는 국가지점번호를 위한 영토 중심의 기준점과 격자 범위, 그리고 부여체계로 두 글자의 한글과 x, y 좌표체계를 제안하였다. 또한, 지점번호 고시대상지역, 지점번호판 설치위치와 민간 및 공공분야 활용방안을 제시하였다.
이 논문은 드모르간의 음수 지도 방법을 연구하는 것을 목적으로 한다. 이를 위하여 우선 드모르간이 제시한 대수발달 단계에 따라 드모르간의 음수관을 정리하고, 드모르간의 음수 지도 방법을 불가능한 뺄셈의 탐색, 불가능한 뺄셈에 대한 수정규칙 탐구, 불가능한 뺄셈에 대한 의미의 구성의 3단계로 나누어 고찰하였다. 드모르간의 음수 지도 방법의 특징은 방정식 지도와 결합되었다는 점, 불가능한 뺄셈 기호를 사용한다는 점, 역사발생적 과정을 준수하는 점진적 형식화를 추구한다는 점이다. 또한, 드모르간의 방법을 학교수학의 방법과 비교함으로써, 그 장점과 단점을 분석하였다. 드모르간은 수학적 실재를 형식과 의미를 동시에 갖는 것으로 보았던 자신의 수학관에 따라 음수를 설명하였으며, 대수의 발달 단계에 맞추어 음수를 서로 상이한 존재로 간주하였고 이에 따라 여러 단계를 거쳐 음수를 지도하도록 하고 있다. 그의 이러한 세심한 조처는 음수의 지도가 단시간에 마무리될 수 없는 성격의 것임을 분명히 인식하게 해 준다.
In this paper we present a probabilistic approach for the estimation of realistic error bounds appearing in the execution of basic algebraic floating point operations. Experimental results are carried out for the extended product the extended sum the inner product of random normalised numbers the product of random normalised ma-trices and the solution of lower triangular systems The ordinary and probabilistic bounds are calculated for all the above processes and gen-erally in all the executed examples the probabilistic bounds are much more realistic.
본 연구는 수학적 표현이 개념적 이해를 형성하는 수단이라는 관점을 토대로 예비교사들의 무리수 개념과 표현 방식에 대한 이해 정도를 조사하여 무리수 개념 지도를 위한 교수학적 시사점을 도출하고자 하였다. 이에 무리수 개념과 표현, 다양한 표현, 표현간 번역 항목을 조사하는 검사도구를 예비교사 48명을 대상으로 적용하였다. 체계적인 분석을 위해 무리수 표현을 비(非)분수, 소수, 기호, 기하, 수직선, 함숫값 표현으로 범주화하여 활용하였다. 분석 결과, 예비교사들은 무리수 정의의 비(非)분수 표현에 내포된 통약불가능성을 명확하게 인식하지 못하였으며, 무리수의 다양한 표현 중에서 기호 표현에 집중 경향을 나타냈고, 다른 표현들을 상대적으로 간과하는 현상을 나타내었다. 특히 규칙성이 있는 비순환 무한소수에 대한 제한된 이해와 무한소수에 대한 일관성 있는 이해의 결여를 확인할 수 있었다. 또한 기호 표현 $\sqrt{5}$에 비해 ${\pi}$를 다른 표현으로 번역하는데 더 큰 어려움을 나타냈으며, ${\pi}$를 번역하는 과정에서 가무한의 관점이 드러나기도 하였다. 이상의 연구결과를 종합하여 무리수 개념 지도는 무리수 정의와 표현의 관계, 다양한 무리수 표현의 이해, 무리수 표현간의 번역에 중점을 두어 지도되어야 함을 주장하였다.
This paper investigates the optimal locations of internal point supports in a symmetric crossply laminated rectangular plate for maximum fundamental frequency of vibration. The method used for solving this optimization problem involves the Rayleigh-Ritz method for the vibration analysis and the simplex method of Nelder and Mead for the iterative search of the optimum support locations. Being a continuum method, the Rayleigh-Ritz method allows easy handling of the changing point support locations during the optimization search. Rectangular plates of various boundary conditions, aspect ratios, composed of different numbers of layers, and with one, two and three internal point supports are analysed. The interesting results on the optimal locations of the point supports showed that (a) there are multiple solutions; (b) the locations are dependent on both the plate aspect ratios and the number of layers (c) the fundamental frequency may be raised significantly with appropriate positioning of the point supports.
In this work, the three-step intermixed iteration for two finite families of nonlinear mappings is introduced. We prove a strong convergence theorem for approximating a common fixed point of a strict pseudo-contraction and strictly pseudononspreading mapping in a Hilbert space. Some additional results are obtained. Finally, a numerical example in a space of real numbers is also given and illustrated.
소수점 아래 0에서 9까지의 임의의 숫자가 무한히 나열되는 무한소수는 '소수점 아래끝자리까지의 모든 숫자를 명확하게 알 수 없는 모호한 수'라는 불투명성을 가지고 있다. 이 논문에서는 이와 같은 불투명성을 야기하는 무한소수 기호로부터 어떻게 연속적인 수를 창조할 수 있었는지를 분석하였다. 무한소수 기호의 완비성 공리에 대한 투명성에 의존하여, 실수 개념이 엄밀하게 형식화되기 이전에도 수학자들은 실수 개념을 다룰 수 있었다. 이 논문의 수학적 역사적 분석은 무한소수에 의존하여 실수 개념을 전개하는 학교수학의 접근과, 완비순서체로서의 실수의 형식적 정의를 다루는 대학수학의 접근 사이에서 야기될 수 있는 이중단절의 문제를 극복하는 데 도움이 될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.