SOME FIXED POINT THEOREMS FOR COMMUTING AND COMPATIBLE MAPPINGS IN NONARCHIMEDEAN MENGER PROBABILISTIC METRIC SPACES

NAN-JING HUANG, BYUNG-SOO LEE AND YONG KAB CHOI

1. Preliminaries

Let \mathbb{R} denote the set of real numbers, \mathbb{R}_+ the non-negative real numbers and \mathcal{D} the set of all distribution functions.

DEFINITION 1.1. Let X be a nonempty set and $\mathcal{F}: X \times X \to \mathcal{D}$. (X,\mathcal{F}) is called a nonarchimedean probabilistic metric space if the following conditions are satisfied (for $x,y \in X$, the distribution $\mathcal{F}(x,y)$ is denoted by $F_{x,y}$):

- (i) $F_{x,y}(t) = 1$ for t > 0 if and only if x = y,
- (ii) $F_{x,y} = F_{y,x}$ for any $x, y \in X$,
- (iii) $F_{x,y}(0) = 0$ for any $x, y \in X$,
- (iv) If $F_{x,y}(t) = 1$ and $F_{y,z}(s) = 1$, then $F_{x,z}(\max\{t,s\}) = 1$ for any $x, y, z \in X$.

DEFINITION 1.2. A triplet (X, \mathcal{F}, T) is called a nonarchimedean Menger probabilistic metric space if (X, \mathcal{F}) is a nonarchimedean probabilistic metric space and T is a T-norm ([5]) with the following condition;

- (v) $F_{x,z}(\max\{t,s\}) \ge T(F_{x,y}(t), F_{y,z}(s))$ for $t, s \in \mathbb{R}_+$ and $x, y, z \in X$. Let
- $\Omega = \{g | g : [0,1] \to \mathbb{R}_+ \text{ is continuous, strictly decreasing, } g(1) = 0$ and $g(0) < \infty\}$.

The second and third authors were supported in part by the Basic Science Research Institute program, Ministry of Education, Korea, 1994, Project No. BSRI-94-1405.

Received Jun 11, 1994. Revised October 10, 1994.

¹⁹⁹¹ AMS Mathematics Subject Classification 46S50, 54H25.

Keywords: Nonarchimedean probabilistic metric space, commuting mapping, compatible mapping, common fixed point.

DEFINITION 1.3. A nonarchimedean Menger probabilistic metric space (X, \mathcal{F}, T) is called a $(C)_g$ type nonarchimedean Menger probabilistic metric space, if there exist a $g \in \Omega$ such that

$$g(T(s,t)) \le g(s) + g(t)$$
 for $s, t \in [0,1]$.

PROPOSITION 1.1. ([2]) (1) If (X, \mathcal{F}, T) is a $(C)_g$ type nonarchimedean Menger probabilistic metric space, then

$$gF_{x,y}(t) \leq gF_{x,z}(t) + gF_{z,y}(t)$$
 for any $x, y, z \in X$ and $t \geq 0$.

(2) If (X, \mathcal{F}, T) is a nonarchimedean Menger probabilistic metric space and $T \geq T_1$, where $T_1(a, b) = \max\{a + b - 1, 0\}$, then (X, \mathcal{F}, T) is a $(C)_g$ type nonarchimedean Menger probabilistic metric space, in which g(t) = 1 - t.

In the sequel we will suppose that X is a complete $(C)_g$ type nonarchimedean Menger probabilistic metric space.

DEFINITION 1.4. Let A and S be mappings from X into itself. A and S are said to be compatible if

$$\lim_{n \to \infty} g F_{ASx_n, SAx_n}(t) = 0 \text{ for } t > 0,$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} AX_n = \lim_{n\to\infty} SX_n = u \in X$.

Obviously, commuting and weakly commuting mappings are compatible, but the converse is not true (see [3,4]).

PROPOSITION 1.2. ([2]) Let A and S be mappings from X into itself. If A and S are compatible, and Au = Su for some u in X, then ASu = SAu.

LEMMA 1.1. ([1]) Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be non-decreasing, upper semi-continuous and $\varphi(t) < t$ for all t > 0, then

(1) for any sequence $\{t_n\}$ of nonnegative real numbers satisfying the following condition:

$$t_{n+1} \leq \varphi(t_n), \quad n = 1, 2, \cdots,$$

we have $\lim_{n\to\infty} t_n = 0$.

(2) especially, for any t in \mathbb{R}_+ satisfying $t \leq \varphi(t)$, we have t = 0.

LEMMA 1.2. ([2]) Let $\{y_n\} \subset X$ be a sequence satisfying $\lim_{n\to\infty} g F_{y_n,y_n+1}(t) = 0$ for all t>0. Suppose $\{y_n\}$ is not a Cauchy sequence in X, then there exist ε , $t_0>0$, and two sequences of positive integers $\{m(i)\}$ and $\{n(i)\}$ such that

- (i) m(i) > n(i) + 1 and $n(i) \to \infty$ $(i \to \infty)$.
- (ii) $gF_{y_{m(i)},y_{n(i)}}(t_0) \geq \varepsilon$ and $gF_{y_{m(i)-1},y_{n(i)}}(t_0) < \varepsilon$, $i = 1, 2, \cdots$

2. Common fixed point theorems

THEOREM 2.1. Let A, B, P and Q be mappings from X into itself such that AP = PA, BQ = QB and for any x, y in X, any t > 0,

$$(gF_{APx,BQy}(t))^{2} \leq \Phi((gF_{x,y}(t))^{2}, gF_{x,APx}(t)gF_{y,BQy}(t),$$

$$gF_{x,BQy}(t)gF_{y,APx}(t), gf_{y,APx}(t)gF_{y,BQy}(t),$$

$$gF_{x,y}(t)gF_{x,APx}(t), gF_{x,APx}(t)gF_{y,APx}(t)),$$

where $\Phi: \mathbb{R}^6_+ \to \mathbb{R}_+$ is upper semi-continuous, nondecreasing in each coordinate variable and satisfies

$$\max\{\Phi(t, t, 0, 2t, t, 2t), \Phi(t, 0, t, 0, 0, 0)\} = \varphi(t) < t \text{ for } t > 0.$$

Then there exists a unique u in X such that

$$Au = Bu = Pu = Qu.$$

Proof. For x_0 in X, let

$$(2.2) x_{2n+1} = APx_{2n} \text{ and } x_{2n+2} = BQx_{2n+1}, \quad n = 0, 1, 2, \cdots.$$

It follows from (2.1) and (2.2) that

$$\begin{split} &(gF_{x_{2n+1},x_{2n}}(t))^2\\ &=(gF_{APx_{2n},BQx_{2n-1}}(t))^2\\ &\leq \Phi((gF_{x_{2n},x_{2n-1}}(t))^2,gF_{x_{2n},x_{2n+1}}(t)gF_{x_{2n-1},x_{2n}}(t),\\ &gF_{x_{2n},x_{2n}}(t)gF_{x_{2n-1},x_{2n+1}}(t),gF_{x_{2n-1},x_{2n+1}}(t)gF_{x_{2n-1},x_{2n+1}}(t),\\ &gF_{x_{2n},x_{2n-1}}(t)gF_{x_{2n},x_{2n+1}}(t),gF_{x_{2n},x_{2n+1}}(t)gF_{x_{2n-1},x_{2n+1}}(t)). \end{split}$$

If $gF_{x_{2n},x_{2n+1}}(t) > gF_{x_{2n-1},x_{2n}}$, from Proposition 1.1 and above inequality, we have

$$\begin{split} &(gF_{x_{2n+1},x_{2n}}(t))^2\\ &\leq \Phi((gF_{x_{2n},x_{2n+1}}(t))^2,(gF_{x_{2n},x_{2n+1}}(t))^2,0,\\ &2(gF_{x_{2n},x_{2n+1}}(t))^2,(gF_{x_{2n},x_{2n+1}}(t))^2,2(gF_{x_{2n},x_{2n+1}}(t))^2)\\ &=\varphi((gF_{x_{2n},x_{2n+1}}(t))^2)\\ &<(gF_{x_{2n},x_{2n+1}}(t))^2, \end{split}$$

which is a contradiction. It shows that $gF_{x_{2n},x_{2n+1}}(t) \leq gF_{x_{2n-1},x_{2n}}(t)$ for t > 0, so

$$(gF_{x_{2n+1},x_{2n}}(t))^{2}$$

$$\leq \Phi((gF_{x_{2n},x_{2n-1}}(t))^{2},(gF_{x_{2n},x_{2n-1}}(t))^{2},0,$$

$$2(gF_{x_{2n},x_{2n+1}}(t))^{2},(gF_{x_{2n},x_{2n-1}}(t))^{2},2(gF_{x_{2n},x_{2n-1}}(t))^{2})$$

$$= \varphi((gF_{x_{2n},x_{2n-1}}(t))^{2}), \text{ for all } t > 0.$$

Similarly, we can prove that

$$(gF_{x_{2n+2},x_{2n+1}}(t))^2 \le \varphi((gF_{x_{2n+1},x_{2n}}(t))^2)$$
 for $t > 0$.

In view of Lemma 1.1 and above inequalities, we have

(2.3)
$$\lim_{n \to \infty} g F_{x_n, x_{n+1}}(t) = 0 \text{ for } t > 0.$$

Now we show that $\{x_n\}$ is a Cauchy sequence in X. By (2.3), it is equivalent to show that $\{x_{2n}\}$ is a Cauchy sequence in X. Suppose that $\{x_{2n}\}$ is not a Cauchy sequence. By Lemma 1.2 and (2.3), there exist $\varepsilon > 0$, $t_0 > 0$, and two sequences of positive integers $\{m(i)\}$ and $\{n(i)\}$ such that

(i)
$$m(i) > n(i) + 1$$
 and $n(i) \to \infty$ $(i \to \infty)$;
(ii) $gF_{x_{2m(i)},x_{2n(i)}}(t_0) \ge \varepsilon$ and $gF_{x_{2m(i)-1},x_{2n(i)}}(t_0) < \varepsilon$, $i = 1,2,\cdots$. This leads to

$$\varepsilon \le gF_{x_{2m(i)},x_{2n(i)}}(t_0) \le \varepsilon + gF_{x_{2m(i)-2},x_{2m(i)-1}}(t_0) + gF_{x_{2m(i)-1},x_{2m(i)}}(t_0),$$

and so

(2.4)
$$\lim_{i \to \infty} gF_{x_{2m(i)}, x_{2n(i)}}(t_0) = \varepsilon.$$

On the other hand, we have

$$\begin{split} &(gF_{x_{2m(i)},x_{2n(i)+1}}(t_0))^2\\ &=(gF_{APx_{2n(i)},BQx_{2m(i)-1}}(t_0))^2\\ &\leq \Phi((\varepsilon+gF_{x_{2m(i)-1},x_{2m(i)-2}}(t_0))^2,gF_{x_{2n(i)},x_{2n(i)+1}}(t_0)gF_{x_{2m(i)-1},x_{2m(i)}}(t_0),\\ &gF_{x_{2n(i)},x_{2m(i)}}(t_0)(gF_{x_{2m(i)-1},x_{2m(i)}}(t_0)+gF_{x_{2m(i)},x_{2n(i)}}(t_0)\\ &+gF_{x_{2n(i)},x_{2n(i)+1}}(t_0)),(gF_{x_{2m(i)-1},x_{2m(i)}}(t_0)+gF_{x_{2m(i)},x_{2n(i)}}(t_0)\\ &+gF_{x_{2n(i)},x_{2n(i)+1}}(t_0))gF_{x_{2m(i)-1},x_{2m(i)}}(t_0),(gF_{x_{2m(i)-1},x_{2m(i)-2}}(t_0)\\ &+\varepsilon)gF_{x_{2n(i)},x_{2n(i)+1}}(t_0),gF_{x_{2n(i)},x_{2n(i)+1}}(t_0)(gF_{x_{2m(i)-1},x_{2m(i)}}(t_0)\\ &+gF_{x_{2m(i)},x_{2n(i)}}(t_0)+gF_{x_{2n(i)},x_{2n(i)+1}}(t_0))). \end{split}$$

Letting $i \to \infty$ and taking an upper limit, using (2.4) and the upper semi-continuity, we obtain

$$(2.5) \qquad \overline{\lim}_{i \to \infty} (gF_{x_{2m(i)}, x_{2n(i)+1}}(t_0))^2 \le \Phi(\varepsilon^2, 0, \varepsilon^2, 0, 0, 0) < \varepsilon^2$$

Since

$$\varepsilon \leq gF_{x_{2m(i)},x_{2n(i)}}(t_0) \leq gF_{x_{2m(i)},x_{2n(i)+1}}(t_0) + gF_{x_{2n(i)+1},x_{2n(i)}}(t_0),$$

it follows from (2.5) that

$$\varepsilon \leq \overline{\lim_{i \to \infty}} g F_{x_{2m(i)}, x_{2n(i)+1}}(t_0) < \varepsilon,$$

which is a contradiction. Therefore, $\{x_{2n}\}$ is a Cauchy sequence in X and so $\{x_n\}$ is also a Cauchy sequence in X. Let $x_n \to u \in X$ $(n \to \infty)$. By (2.1) and (2.2), we have

$$\begin{split} &(gF_{APu,X_{2n}}(t))^2\\ &=(gF_{APu,BQx_{2n-1}}(t))^2\\ &\leq \Phi((gF_{u,x_{2n-1}}(t))^2,gF_{u,APu}(t)gF_{x_{2n-1},x_{2n}}(t),\\ &gF_{u,x_{2n}}(t)gF_{x_{2n-1},APu}(t),gF_{x_{2n-1},APu}(t)gF_{x_{2n-1},x_{2n}}(t),\\ &gF_{x_{2n-1},u}(t)gF_{u,APu}(t),gF_{u,APu}(t)gF_{x_{2n-1},APu}(t)) \text{ for } t>0. \end{split}$$

Letting $n \to \infty$ and taking an upper limit, we obtain

$$(gF_{APu,u}(t))^{2} \leq \Phi(0,0,0,0,0,(gF_{u,APu}(t))^{2})$$

$$\leq \varphi((gF_{u,APu}(t))^{2}) \text{ for } t > 0.$$

It follows from Lemma 1.1 that

$$gF_{APu,u}(t) = 0 \text{ for } t > 0.$$

This implies u = APu. Similarly, we can prove that u = BQu. Since AP = PA, from (2.1) we have

$$(gF_{Pu,u}(t))^{2} = (gF_{APPu,BQu}(t))^{2}$$

$$\leq \Phi((gF_{Pu,u}(t))^{2}, 0, (gF_{Pu,u}(t))^{2}, 0, 0, 0)$$

$$\leq \varphi((gF_{Pu,u}(t))^{2}) \text{ for } t > 0.$$

This shows $gF_{Pu,u}(t) = 0$ for t > 0. So Pu = u. Similarly, Qu = u. Therefore,

$$Au = APu = u = BQu = Bu.$$

From (2.1), it is easy to prove that u is a unique common fixed point of A, B, P and Q.

This completes the proof of Theorem 2.1.

THEOREM 2.2. Let A, B and S be self mappings of X which satisfy $A(X) \cup B(X) \subset S(X)$, A and S are compatitle and B and S are compatitle. Suppose further that

$$(2.6) \frac{(gF_{Ax,By}(t))^2 \leq \Phi(gF_{Sx,Ax}(t)gF_{Sy,By}(t), gF_{Sx,By}(t)gF_{Sy,Ax}(t),}{gF_{Sx,Ax}(t)gF_{Sx,By}(t), gF_{Sy,Ax}(t)gF_{Sy,By}(t))}$$

for t > 0 and x, y in X, where $\Phi : \mathbb{R}^4_+ \to \mathbb{R}_+$ is upper semi-continuous and nondecreasing in each coordinate variable, and satisfies

$$\Phi(t, t, a_1 t, a_2 t) < t \text{ for } t > 0,$$

where $a_1, a_2 \in \{0, 1, 2\}$ with $a_1 + a_2 = 2$. If S is continuous, then A, B and S have a unique common fixed point.

Proof. Since $A(X) \cup B(X) \subset S(X)$, for any given x_0 in X we can choose $\{x_n\}$ in X such that

$$Ax_{2n} = Sx_{2n+1}, \quad Bx_{2n+1} = Sx_{2n+2}, \quad n = 0, 1, 2, \cdots$$

As in Theorem 2.1, we can prove that $\{Sx_n\}$ is a Cauchy sequence in X. Letting $Sx_n \to u$ $(n \to \infty)$, we know that

$$Ax_{2n} \to u$$
, $Bx_{2n+1} \to u$ $(n \to \infty)$.

Since S is continuous, $SSx_{2n} \to Su$, $SAx_{2n} \to Su$, and since A and S are also compatible, $ASx_{2n} \to Su$ by Definition 1.4. Similarly, $BSx_{2n+1} \to Su$ and $SBx_{2n+1} \to Su$.

From (2.6) we have

$$\begin{split} &(gF_{ASx_{2n},Bu}(t))^{2} \\ &\leq \Phi(gF_{SSx_{2n},ASx_{2n}}(t)gF_{Su,Bu}(t),gF_{SSx_{2n},Bu}(t)gF_{Su,ASx_{2n}}(t), \\ &gF_{SSx_{2n},ASx_{2n}}(t)gF_{SSx_{2n},Bu}(t),gF_{Su,ASx_{2n}}(t)gF_{Su,Bu}(t)) \end{split}$$

for t > 0. Taking the limit as $n \to \infty$ yields

$$(gF_{Su,Bu}(t))^2 \le \Phi(0,0,0,0) = 0 \text{ for } t > 0.$$

Therefore, Su = Bu. Similarly, Su = Au. Since A and S are compatible, and B and S are also compatible, it follows from Su = Au = Bu and Proposition 1.2 that

$$SAu = ASu$$
 and $SBu = BSu$.

Now (2.6) implies

$$(gF_{ASu,Su}(t))^{2} = (gF_{ASu,Bu}(t))^{2}$$

$$\leq \Phi(gF_{SSu,ASu}(t)gF_{Su,Bu}(t), gF_{SSu,Bu}(t)gF_{Su,ASu}(t),$$

$$gF_{SSu,ASu}(t)gF_{SSu,Bu}(t), gF_{Su,ASu}(t)gF_{Su,Bu}(t))$$

$$\leq \Phi(0, (gF_{ASu,Su}(t))^{2}, 0, 0) \text{ for } t > 0.$$

Hence $gF_{ASu,Su}(t) = 0$ for t > 0. This implies that ASu = Su. Similarly, ASu = Su. So we have SSu = SAu = ASu = Su. These show that Su is a common fixed point of A, B and S. From (2.6), it is easy to prove that Su is a unique common fixed point of A, B and S. This completes the proof of Theorem 2.2.

The following is an immediate consequence of Theorem 2.1.

THEOREM 2.3. Let A_i and P_i be mappings from X into itself such that $A_iP_i = P_iA_i, i = 1, 2, \cdots$ and for any x, y in X and any t > 0,

$$\begin{split} &(gF_{A_{i}P_{i}x,A_{i+1}P_{i+1}y}(t))^{2} \\ \leq & \Phi((gF_{x,y}(t))^{2},gF_{x,A_{i}P_{i}x}(t)gF_{y,A_{i+1}P_{i+1}y}(t), \\ &gF_{x,A_{i+1}P_{i+1}y}(t)gF_{y,A_{i}P_{i}x}(t),gF_{y,A_{i}P_{i}x}(t)gF_{y,A_{i+1}P_{i+1}y}(t), \\ &gF_{x,y}(t)gF_{x,A_{i}P_{i}x}(t),gF_{x,A_{i}P_{i}x}(t)gF_{y,A_{i}P_{i}x}(t)), \end{split}$$

where $\Phi: \mathbb{R}^6_+ \to \mathbb{R}_+$ is the same as in Theorem 2.1. Then there exists a uique u in X such that

$$u = A_i u = P_i u, i = 1, 2, \cdots$$

References

- S. S. Chang, Fixed Point Theory with Applications, Chongqing Fublishing House Chongqing, 1984.
- S. S. Chang, N.J. Huang and D.P. Wu, Common fixed point theorems for compatible mappings in nonarchimedean Menger probabilistic metric spaces with applications, J. Sichuan Univ. 28 (1991), 19-25.
- 3. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. & Math. Sci. 9 (1986), 771-779.
- G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps, Internat. J. Math. & Math. Sci. 16 (1993), 417-428.
- 5. B. Schweizer, A. Sklar, Probabilistic metric spaces, North-Holland, 1983.

Department of Mathematics Sichuan University Chengdu P. R. China Department of Mathematics Kyungsung University Pusan 608-736, Korea

Department of Mathematics Gyeongsang National University Jinju 660-701, Korea