• 제목/요약/키워드: Nanoparticle toxicity

검색결과 65건 처리시간 0.035초

이산화규소 나노입자의 마우스 복강 내 주입에 의한 급성독성 (In vivo Acute Toxicity of Silicon Dioxide Nanoparticle to Mice after Intraperitonial Injection)

  • 차춘남;정원철;이여은;유창열;김곤섭;김의경;김석;이후장
    • 한국식품위생안전성학회지
    • /
    • 제26권1호
    • /
    • pp.43-48
    • /
    • 2011
  • 본 연구는 이산화규소 나노입자의 급성독성을 확인하기 위해 여러 농도로 마우스의 복강에 주사한 다음 24시간 후에, 혈액학적, 혈액생화학적, 그리고 병리조직학적인 검사를 수행하였다. 혈액학적 검사에서, group II (100 mg/kg 이산화규소 나노입자)에서는 lymphocyte와 monocyte의 수치가 대조군과 비교하여 통계적으로 유의한 차이를 나타내었으며(p < 0.05), group III (200 mg/kg 이산화규소 나노입자)에서는 lymphocyte, monocyte, 그리고 hemoglobin의 수치가 대조군과 비교하여 통계적으로 유의한 차이를 나타내었다(p < 0.05). 혈액생화학적 검사에서, group II의 경우에는 ALT가, group III의 경우에는 AST, ALT, BUN, 그리고 creatinine이 대조군과 비교하여 통계적으로 유의한 차이를 나타내었다(p < 0.05). 병리조직학적 관찰에서는, group III의 간과 신장 조직에서 미약한 독성작용이 관찰되었다. 향후, 이산화규소 나노입자에 대한 장기적인 연구를 통해 독성영향 및 작용기전을 규명할 필요가 있는 것으로 사료된다.

Synthesis, Characterization and Cosmetic Application of Self-Assembled Sericin-PEG Nanoparticle

  • E. S. Choung;S. Y. Eom;Kim, J. H.;Kim, K. S.;Kim, K. H.;Lee, K. G.;Lee, Y. W.;C. S. Cho
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.501-519
    • /
    • 2003
  • Silk Sericin(SS) is a natural protein extracted from cocoon of bombix mori and shows moisturizing effect to the skin due to a number of hydroxyl groups in the structure. But its application to cosmetics is limited due to its poor solubility in water. In order to solve this drawback and expand its application to cosmetics, polyethyleneglycol(PEG) was conjugated with sericin by reacting activated polyethyleneglycol(ActPEG). Reaction site of sericin is tyrosine residue, which was determined by using $^1$H-NMR. Random coil structure of sericin was transformed to beta-sheet structure by conjugating polyethyleneglycol. It was confirmed that melting point of sericin-PEG conjugate was lowered compared to that of each sericin and PEG due to the interaction between sericin and PEG in crystalline structure. Self-assembled sericin-PEG nanoparticle was obtained by dialyzing with alcohol solution of sericin-PEG conjugate against water. The particle is spherical and has 200-400nm of size. The moisturizing ability of sericin-PEG nanoparticle was much higher than that of sericin itself. Incorporation of vitamin A into sericin-PEG nanoparticle was carried out by diafiltration method. The content of incorporated Vitamin A in sericin-PEG nanoparticle was 8.9 wt%. Releasing behaviour of vitamin A incorporated into nanoparticle was tested in phosphate buffer, pH 7.4 at 37$^{\circ}C$. and half-life of Vitamin A release was 43hrs. Sericin-PEG nanoparticle exhibited higher moisturing effect than sericin itself and distilled water, respectively. No toxicity and irritation were observed in animal tests. It can be expected that the self-assembled sericin-PEG nanoparticle can be developed for cosmetics.

  • PDF

Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation

  • Sooklert, Kanidta;Wongjarupong, Asarn;Cherdchom, Sarocha;Wongjarupong, Nicha;Jindatip, Depicha;Phungnoi, Yupa;Rojanathanes, Rojrit;Sereemaspun, Amornpun
    • Toxicological Research
    • /
    • 제35권3호
    • /
    • pp.257-270
    • /
    • 2019
  • Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.

Comparative Toxicity Studies of Ultra-Pure Ag, Au, Co, and Cu Nanoparticles Generated by Laser Ablation in Biocompatible Aqueous Solution

  • Kim, Yea-Seul;Kim, Kuk-Ki;Shin, Seon-Mi;Park, Seung-Min;Hah, Sang-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3265-3268
    • /
    • 2012
  • Nanoparticles (NPs) are increasingly used in consumer products, which have aroused many concerns and debates regarding their fate in biological systems from a point of their safety/toxicity. Although a number of studies on the biological effects of NPs have been published, these are often complicated by the possible toxicity of conventional NPs, caused by contamination with chemical precursors or additives during their synthesis and/or purification procedures. To explicitly understand the toxicity basis of NPs, it is necessary to directly address a main problem related to their intrinsic/inherent toxicity and/or incompatibility with biological objects. The present study is designed to take advantage of a novel laser-assisted method called laser ablation to generate Ag, Au, Co, and Cu NPs in biocompatible aqueous solution, and to evaluate the toxicity of the resulting ultra-pure NPs. Our results show that the ultra-pure NPs with nascent surfaces possess moderate cytotoxicity to human cells in a cell-dependent manner.

Research Trends of Ecotoxicity of Nanoparticles in Soil Environment

  • Lee, Woo-Mi;Kim, Shin-Woong;Kwak, Jin-Il;Nam, Sun-Hwa;Shin, Yu-Jin;An, Youn-Joo
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.253-259
    • /
    • 2010
  • We are consistently being exposed to nanomaterials in direct and/or indirect route as they are used in almost all the sectors in our life. Nations across the worlds are now trying to put global regulation policy on nanomaterials. Sometimes, they are reported to be more toxic than the corresponding ion and micromaterials. Therefore, safety research of nanoparticles has huge implications on a national economics. In this study, we evaluated and analyzed the research trend of ecotoxicity of nanoparticles in soil environment. Test species include terrestrial plants, earthworms, and soil nematode. Soil enzyme activities were also discussed. We found that the results of nanotoxicity studies were affected by many factors such as physicochemical properties, size, dispersion method and test medium of nanoparticle, which should be considered when conducting toxicity researches. In particular, more researches on the effect of physicochemical properties and fate of nanoparticles on toxicity effect should be conducted consistently.

Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai

  • Choi, Seona;Kim, Soyoun;Bae, Yeon-Jae;Park, June-Woo;Jung, Jinho
    • Environmental Analysis Health and Toxicology
    • /
    • 제30권
    • /
    • pp.3.1-3.6
    • /
    • 2015
  • Objectives This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. Methods Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. Results The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for $AgNO_3$ (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. Conclusions The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.