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Introduction

The antimicrobial activity of silver nanoparticles has resulted 

in their widespread use in many consumer products, such as 

disinfectants, deodorants, antimicrobial sprays and powders, 

bedding, washers, water purification, toothpaste, shampoo and 

rinses, nipples and nursing bottles, fabrics, deodorants, filters, 

kitchen utensils, toys, and humidifiers. Yet, while the popula-

tion exposed to silver nanoparticles continues to increase with 

ever-new applications, silver nanoparticles remain a contro-

versial research area with respect to their toxicity to biological 

systems. The toxicity of silver nanoparticles has been studied 

extensively. The acute inhalation toxicity, LC50, of  silver 

nanoparticles is suggested to be higher than 3.1 × 106 particles/

cm3 (750 mg/m3) [1]. A toxicity study that exposed rats to 

twenty-eight days of  silver nanoparticle inhalation did not 

show any significant toxicity up to (1.32 × 106 particles/cm3, 

61 μg/m3) [2]. In contrast, a study on the oral toxicity of silver 
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Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, 
despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the envi-
ronment and human health. 
Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micro-
nuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days 
according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The 
rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of 0.7 × 106 particles/cm3 (low dose), 1.4 × 106 
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Results: There were no statistically signifi cant differences in the micronucleated polychromatic erythrocytes or in the ratio of poly-
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Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic 
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nanoparticles that exposed rats to silver nanoparticles for 28 

days indicated that some significant dose-dependent changes 

were found in the alkaline phsophatase and cholesterol values 

in both the male or female rats, which seemed to indicate that 

exposure to over more than 300 mg/kg of silver nanoparticles 

may result in slight liver damage [3]. Consistent with these find-

ings, silver nanoparticles were found to be toxic to the liver in 

both male and female rats. A NOAEL (no observable adverse 

effect level) of  30 mg/kg and LOAEL (lowest observable ad-

verse effect level) of 125 mg/kg are suggested based on the 90-

day the subchronic oral toxicity study in reference [4]. Target 

organs for silver nanoparticles in another 90-day subchronic 

inhalation toxicity study were considered to be the lungs and 

liver in male and female rats [5]. Lung function changes were 

observed when animals were subchronically exposed to silver 

nanoparticles over a period of 90 days [6]. A no observable ad-

verse effect level of 100 μg/m3 is suggested from the experiment 

in reference [5]. Many researchers have studied the genotoxicity 

of silver nanoparticles. However, the majority of studies could 

not reflect the practical genotoxicity effect because they per-

formed experiments with in vitro systems on microorganisms 

and cell lines. In contrast, we conducted a study for an in vivo 
system with rats. Notably, we carried out the genotoxicity stud-

ies for animals subchronically exposed via oral and inhalation 

routes. The genotoxicity of silver nanoparticles after 28 days of 

oral administration was negative for the in vivo micronucleus 

test [3]. Accordingly, we have investigated the genotoxicity of 

silver nanoparticles after subchronic inhalation exposure. 

Materials and Methods

Generation of silver nanoparticles
The silver nanoparticles were generated as described in pre-

vious reports [2,6], and the rats were exposed to the silver 

nanoparticles in a whole-body-type exposure chamber (1.3 m3, 

Dusturbo, Seoul), consisting of  a small ceramic heater con-

nected to an AC power (91.6 V) supply and housed within a 

quartz tube case [7]. The heater dimensions were 50 × 5 × 1.5 

mm3, and a surface temperature of about 1,500oC within a lo-

cal heating area of 5 × 10 mm2 could be achieved within about 

10 s. For long-term testing, the source material (about 160 mg, 

Daedeok Science, Daejeon) was positioned at the highest tem-

perature point. The quartz case was 70 mm in diameter and 

140 mm long [8]. Clean (dry and filtered) air was used as the 

carrier gas, and the gas flow was maintained at 30.0 L/min (Re 

= 572, laminar flow regime) using a mass flow controller (MFC, 

AERA, FC-7810CD-4V, Japan). In this study, the system pro-

duced different concentrations of nanoparticles (high, middle, 

and low) in three separate chambers. The nanoparticle genera-

tor was operated at 30 L/min and this was mixed with the 200 

L/min flow rate of  the main flow through the high-concen-

tration chamber. Using the MFC for the first particle sampler, 

a portion of the high nanoparticle concentration was diverted 

to the middle-concentration chamber and diluted by the MFC 

flow rate. In the same way, a portion of the middle nanopar-

ticle concentration was also diverted to the low-concentration 

chamber and diluted by the MFC flow rate. The flow rates for 

the high, middle, and low doses were 47.02 ± 0.14 lpm, 6.76 ± 

0.16 lpm, and 5.42 ± 0.18 lpm (mean ± S.E.), respectively. 

Monitoring the inhalation chamber and analysis of 
silver nanoparticles
In the individual chambers containing the different nanopar-

ticle concentrations, the nanoparticle distribution with respect 

to size was measured directly using a differential mobility 

analyzer (nano-DMA, 4220, HCT Co., Ltd. Korea, range 

2.5-150 nm) and ultra-condensation particle counter (UCPC, 

4312, HCT Co., Ltd. Korea, 3025, 0-108/cm3 detection range). 

Nanoparticles from 1.98 to 64.9 nm were measured using 

sheath air at 5 L/min and polydispersed aerosol air at 1 L/min, 

with these values being the operational conditions for nano-

DMA and UCPC, respectively. The particle numbers per cm3 

in the fresh-air control chamber were measured using a particle 

sensor (4103, HCT Co., Ltd. Korea) that consisted of channel 

1 (below 300 nm) and channel 2 (over 300 nm). 

Animals and conditions
Six-week-old male and female, specific-pathogen-free (SPF) 

Sprague-Dawley rats were purchased from SLC (Tokyo. Japan) 

and acclimated for 2 wks before starting the experiments. Dur-

ing the acclimation and experimental periods, the rats were 

housed in polycarbonate cages (5 rats per cage) in a room with 

controlled temperature (23 ± 2oC) and humidity (55 ± 7%) with 

a 12-h light/dark cycle. The rats were fed a rodent diet (Harlan 

Teklab, Plaster International Co., Seoul) and filtered water ad li-
bitum. The 8-week-old rats, weighing about 253 g for the males 

and 162 g for the females, were then divided into 4 groups (10 

rats in each group): fresh-air control, low-dose group (target 

dose, 0.6 × 106 particles/cm3, 1.0 × 109 nm2/cm2), middle-dose 

group (target dose, 1.4 × 106 particles/cm3, 2.5 × 109 nm2/cm2), 

and high-dose group (target dose, 3.0 × 106 particles/cm3, 5.0 

× 109 nm2/cm2), and exposed to silver nanoparticles for 6 hr/

day, 5 days/wk, for 13 weeks [5]. The animals were examined 

daily on weekdays for any evidence of exposure-related effects, 

including respiratory, dermal, behavioral, nasal, or genitouri-

nary changes suggestive of  irritancy. The body weights were 
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evaluated at the time of purchase, at the time of grouping, once 

a week during the inhalation exposure, and before necropsy.

Rat bone marrow micronucleus test 
The micronucleus assay was conducted using a method based 

on OECD guideline 474 [9,10]. Briefly, the rats were killed 24 

hr after the last administration, then the femurs were removed 

and the bone marrow collected in 1.5 ml tubes containing 1 ml 

of  fetal bovine serum, and these tubes were then centrifuged 

for 5 min at 1,000 rpm. Two smears were prepared, which 

were allowed to dry in air prior to fixation with methanol and 

staining with an acridine orange solution. One drop of a 0.04 

mM acridine orange solution in a phosphate buffer was placed 

on the fixed cells and covered with a coverslip. The number of 

micronucleated polychromatic erythrocytes (MNPCEs) among 

every 2000 polychromatic erythrocytes (PCEs) per animal was 

examined within a day using a fluorescent microscope (Leica, 

Germany), and the slides were coded and scored blindly by 

one expert scorer. Plus, since normochromatic erythrocytes 

(NCE) become opaque when using a fluorescence stain, one 

additional slide per animal was stained with May-Grünwald 

and Giemsa solutions. To evaluate the bone marrow toxicity, 

the ratio PCE / PCE + NCE was calculated based on a total of 

200 erythrocytes using these slides [11].

Statistics
The statistical analyses were performed using SPSS 12.1, and 

the data was expressed as the mean ± S.D. An X2 test and a 

one-way analysis of variance (ANOVA) were applied to test all 

the data. A value of p < 0.05 indicated statistical significance. 

Results

The in vivo genotoxic effect of  the silver nanoparticles was 

examined using a micronucleus test, as a mammalian in vivo 

micronucleus test is wildly used for the detection of cytogenetic 

damage with test substances. The results of the micronucleus 

assay were determined after the 90-day silver nanoparticles 

inhalation exposure at various doses to the Sprague-Dawley 

male and female rats. All the animals appeared normal and 

remained healthy until the bone marrow was harvested. There 

were no significant changes in the body weights of  the male 

rats. Although the female rats exhibited a significant body 

weight difference between the high and middle dose groups, 

there were no significant dose-related changes [5]. No signifi-

cant organ weight changes were observed in either the male or 

female rats after the 90 days of silver nanoparticle exposure [5].  

However, a dose-dependent deposition of silver nanoparticles 

was found in the blood, stomach, brain, liver, kidneys, lungs, 

and testes, indicating that the silver nanoparticles were systemi-

cally distributed in the mammalian tissues.

The frequency of micronucleated polychromatic erythro-

cytes (MN PCEs) in every 2000 PCEs for the male rats was 0.13, 

0.21, and 0.18 percent for the groups exposed to low, middle, 

and high concentrations of  silver nanoparticles, respectively, 

while that for the control was 0.14 percent. Plus, the frequency 

of MN PCEs in every 2000 PCEs for the female rats was 0.09, 

0.08, and 0.13 for the groups exposed to low, middle, and high 

concentrations of silver nanoparticles, respectively, while that 

for the control was 0.14 percent. Thus, although a dose-related 

increase was found in the number of  MN PCEs in the male 

rats, no significant treatment-related increase of MN PCEs was 

detected in the male and female rats when compared to the 

corresponding negative controls (Table 1, 2).  No statistically 

significant difference in the PCE / (PCE + NCE) ratio, repre-

senting the absence of bone marrow cytotoxicity, was observed 

in the male and female rats after silver nanoparticle exposure 

when compared with the control (Table 1, 2). 

Table 2.  Frequency of MNPCEs and PCE / (PCE + NCE) ratio in 
bone marrow of female rats

Dose
(mg/kg/day)

No. of rats
(Female)

Frequency of MN PCEs 
in every 2000 PCEs 
(Mean ± SE, %)

PCE / 
(PCE + NCE)

(Mean ± SE, %)

0 10 0.14 ± 0.08 0.29 ± 0.08

30 10 0.09 ± 0.06 0.30 ± 0.09

300 10 0.08 ± 0.06 0.35 ± 0.08

1,000 10 0.13 ± 0.10 0.31 ± 0.08

MN PCE: micronucleated polychromatic erythrocytes, PCE: polychro-
matic erythrocytes, NCE: normochromatic erythrocytes.

Table 1. Frequency of MN PCEs and PCE / (PCE + NCE) ratio in 
bone marrow of male rats

Dose
No. of rats

(Male)

Frequency of MN PCEs
in every 2000 PCEs 

(Mean ± SE, %)

PCE / 
(PCE + NCE)

(Mean ± SE, %)

0 10 0.14 ± 0.10 0.36 ± 0.10

Low 10 0.13 ± 0.09 0.39 ± 0.07

Middle 10 0.21 ± 0.09 0.31 ± 0.05

High 10 0.18 ± 0.13 0.30 ± 0.08

MN PCE: micronucleated polychromatic erythrocytes, PCE: polychro-
matic erythrocytes, NCE: normochromatic erythrocytes.
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Discussion

At present, silver nanoparticles are the most commonly applied 

nanomaterial to clothing, foot wear, textiles, medical devices, 

home appliances, and cosmetics [12-15]. Despite their enor-

mous benefits, their health and environmental effects are not 

obvious and many researchers endeavor to find what they are. 

It is known that silver nanoparticles reduce the mitochondrial 

function and glutathione level and increase the intercellular 

ROS level in various cells, which induces oxidative stress, DNA 

damage, and apoptosis [16-18]. In addition, many genotoxicity 

data have recently been reported. According to Wise et al. [19], 

they investigated the cytotoxicity and genotoxicity using silver 

nanospheres (30 nm) which were exposed to a medaka (Oryzias 
latipes) cell line [19]. They reported that silver nanopartcles in-

duced cell death at 0.05-5 μg/cm2 and chromosomal aberration 

and aneuploidy at 0.05-0.3 μg/cm2. [19]. On the contrary, Lu et 

al. [20] assessed the cytotoxicity and genotoxicity for colloidal 

silver nanoparticles (30 nm) using the MTT assay and Comet 

assay at 100 μg/ml. The result showed that silver nanoparticles 

did not induce toxic effects for human keratinocytes [20]. There 

have been several in vitro genotoxicity experiments for silver 

nanoparticles. Yet the results conflicted with each other due 

to the use of  various test methods, test materials, and other 

conditions, such as capping agents and particle aggregation/

agglomeration. In a previous in vivo micronucleus study, after 

28 days of silver nanoparticle oral administration, the present 

authors found that silver nanoparticles did not affect either 

the frequency of  micronucleated polychromatic erythrocytes, 

taken as an indicator of DNA damage, or the PCE / (PCE + 

NCE) ratio, an indicator of  toxicity to bone marrow cells, in 

male and female rats [3]. The current study used a different 

route of  administration and a longer term of exposure dura-

tion; the male and female rats did not exhibit any effect on the 

frequency of  their micronucleated polychromatic erythrocyte 

level or PCE / (PCE + NCE) ratio. Inhalation exposure of sil-

ver nanoparticles, which is known to be better dosimetry than 

any other exposure type, such as oral, injection, or intratracheal 

instillation, is an effective method for delivering silver nanopar-

ticles systemically. The 90-day subchronic inhalation toxicity 

study conducted simultaneously with this genotoxic study 

showed that the lungs and liver were the major target tissues 

for prolonged silver nanoparticle exposure [5]. Furthermore, 

silver nanoparticle exposure-related bile-duct hyperplasia was 

noted in both the male and female animals [5]. As previously 

observed in the 28-day inhalation and 28-day oral-dose studies, 

silver nanoparticles were distributed in all the tissues examined 

in the present study [2,3]. Thus the inhaled silver nanoparticle 

could be exposed to bone marrow cells. Current other genotox-

icity tests, such as the in vitro bacterial reverse mutation test (so 

called Ames test) and in vitro chromosomal aberration test also 

indicated negative results for the genotoxicity tests (unpublished 

data). Thus silver nanoparticle or silver ions generated from the 

surface of silver nanoparticles may not act as a direct or indi-

rect mutagen. 
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