In vivo Acute Toxicity of Silicon Dioxide Nanoparticle to Mice after Intraperitonial Injection

이산화규소 나노입자의 마우스 복강 내 주입에 의한 급성독성

  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Jung, Won-Chul (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Yeo-Eun (Department of Environmental Health, Graduate School of Public Health, Gyeongsang National University) ;
  • Yoo, Chang-Yeul (Department of Computer Information, Gyeongnam Provincial Namhae College) ;
  • Kim, Gon-Sup (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Eui-Kyung (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Suk (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 차춘남 (경상대학교 산업시스템공학부 공학연구원) ;
  • 정원철 (경상대학교 수의과대학 생명과학연구소) ;
  • 이여은 (경상대학교 보건대학원 환경보건학과) ;
  • 유창열 (경남도립남해대학 인터넷정보학과) ;
  • 김곤섭 (경상대학교 수의과대학 생명과학연구소) ;
  • 김의경 (경상대학교 수의과대학 생명과학연구소) ;
  • 김석 (경상대학교 수의과대학 생명과학연구소) ;
  • 이후장 (경상대학교 수의과대학 생명과학연구소)
  • Received : 2011.02.15
  • Accepted : 2011.03.07
  • Published : 2011.03.31

Abstract

For the application of nano-sized material in various fields, the evaluation of nano-sized material toxicity is important. In the present study, various concentrations of 200 nm-sized silicon dioxide nanoparticle suspension were intraperitonially injected into mice to identify the toxicity of silicon dioxide nanoparticle in vivo. In the hematological analysis of group II treated with silicon dioxide nanoparticle 100 mg/kg body weight, lymphocytes and monocytes were significantly different compared to the control group. In group III treated with silicon dioxide nanoparticle 200 mg/kg body weight, lymphocytes, monocytes and hemoglobin were significantly different compared to the control group. In blood biochemical analysis of group III, the concentration of AST, ALT, BUN, and creatinine were significantly different compared to the control group. Histopathologic examination of the kidney indicated a mild injury only in mice received 200 mg/kg silicon dioxide nanoparticle. According to the results of the present study, the significant differences in the hematological and blood biochemical analyses and abnormal histopathological findings in the mouse kidney may have been related to exposure to silicon dioxide nanoparticle.

본 연구는 이산화규소 나노입자의 급성독성을 확인하기 위해 여러 농도로 마우스의 복강에 주사한 다음 24시간 후에, 혈액학적, 혈액생화학적, 그리고 병리조직학적인 검사를 수행하였다. 혈액학적 검사에서, group II (100 mg/kg 이산화규소 나노입자)에서는 lymphocyte와 monocyte의 수치가 대조군과 비교하여 통계적으로 유의한 차이를 나타내었으며(p < 0.05), group III (200 mg/kg 이산화규소 나노입자)에서는 lymphocyte, monocyte, 그리고 hemoglobin의 수치가 대조군과 비교하여 통계적으로 유의한 차이를 나타내었다(p < 0.05). 혈액생화학적 검사에서, group II의 경우에는 ALT가, group III의 경우에는 AST, ALT, BUN, 그리고 creatinine이 대조군과 비교하여 통계적으로 유의한 차이를 나타내었다(p < 0.05). 병리조직학적 관찰에서는, group III의 간과 신장 조직에서 미약한 독성작용이 관찰되었다. 향후, 이산화규소 나노입자에 대한 장기적인 연구를 통해 독성영향 및 작용기전을 규명할 필요가 있는 것으로 사료된다.

Keywords

References

  1. 임종환. 식품포장과 나노기술. 식품과학과 산업, 41, 46- 58 (2008).
  2. Lison, D., Thomassen, L.C., Rabolli, V., Gonzalez, L., Napierska, D., Seo, J.W., Kirsch-Volders, M., Hoet, P., Kirschhock, C.E. and Martens, J.A. Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol. Sci. 104, 155- 162 (2008). https://doi.org/10.1093/toxsci/kfn072
  3. 이호성. 우리나라 나노기술분야 정책 및 발전계획. 물리학과 첨단기술, 17, 48-50 (2008).
  4. Roco, M.C. National nanotechnology initiative - past, present, future. In: Handbook of nanoscience, engineering and technology, 2nd Ed., Goddard, W., Brenner, D., Lyshevski, S. and Iafrate, G. (eds.), CRC Press, Florida, pp. 15-18 (2007).
  5. Nel, A., Xia, T., Madler, L. and Li, N. Toxic potential of materials at the nanolevel. Science 311, 622-627 (2006). https://doi.org/10.1126/science.1114397
  6. Woodrow Wilson International Center for Scholars (WWICS). A nanotechnology consumer products inventory, WWICS, Project on emerging technologies. 2007. Available from: http:// www.nanotechproject.org. Accessed September 24, 2007.
  7. Kim, J.S., Yoon, T.J., Yu, K.N., Kim, B.G., Park, S.J., Kim, H.W., Lee, K.H., Park, S.B., Lee, J.K. and Cho, M.H. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89, 338-347 (2006). https://doi.org/10.1093/toxsci/kfj027
  8. Mnyusiwalla, A., Daar, A.S. and Singer, P.A. Mind the gap : science and ethics in nanotechnology. Nanotechnology 14, R9-R13 (2003). https://doi.org/10.1088/0957-4484/14/3/201
  9. Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J. and Wingett, D.G. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res. Lett. 4, 1409-1420 (2009). https://doi.org/10.1007/s11671-009-9413-8
  10. Das, S., Mandal, A.K., Ghosh, A., Panda, S., Das, N. and Sarkar, S. Nanoparticulated quercetin in combating age related cerebral oxidative injury. Curr. Aging Sci. 1, 169-174 (2008). https://doi.org/10.2174/1874609810801030169
  11. Sharma, H.S., Hussain, S., Schlager, J., Ali, S.F. and Sharma, A. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir. Suppl. 106, 359-364 (2010).
  12. Liu, H., Ma, L., Zhao, J., Liu, J., Yan, J., Ruan, J. and Hong, F. Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol. Trace Elem. Res. 129, 170-180 (2009). https://doi.org/10.1007/s12011-008-8285-6
  13. U. S. Food and Drug Administration (FDA). Nanotechnology: A report of the U. S. Food and Drug Administration nanotechnology tesk force. Food and Drug Administration, Rockville, Maryland, pp. 12-18 (2007).
  14. Vallet-Regi, M., Balas, F., and Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl. 46, 7548-7558 (2007). https://doi.org/10.1002/anie.200604488
  15. Lin,W., Huang, Y.W., Zhou, X.D. and Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217, 252-259 (2006). https://doi.org/10.1016/j.taap.2006.10.004
  16. Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B. and Zhuang, Z. $SiO_2$ nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part. Fibre. Toxicol. 7, 1-12 (2010). https://doi.org/10.1186/1743-8977-7-1
  17. Slowing, I.I., Trewyn, B.G., Giri, S. and Lin, V.S.-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 1225-1236 (2007). https://doi.org/10.1002/adfm.200601191
  18. Wei, H., Zhou, L., Li, J., Liu, J. and Wang, E. Electrochemical and electrochemiluminescence study of Ru(bpy)(2+)3- doped silica nanoparticles with covalently grafted biomacromolecules. J. Colloid Interface Sci. 321, 310-314 (2008). https://doi.org/10.1016/j.jcis.2008.02.012
  19. Loo, C., Lowery, A., Halas, N., West, J. and Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709-711 (2005). https://doi.org/10.1021/nl050127s
  20. Santra, S., Zhang, P., Wang, K., Tapec, R. and Tan, W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73, 4988-4993 (2001). https://doi.org/10.1021/ac010406+
  21. Wolford, S.T., Schroer, R.A. and Gohs, F.X. Reference range data base for serum chemistry and hematology values in laboratory animals. J. Toxicol. Environ. Health 18, 161-188 (1986). https://doi.org/10.1080/15287398609530859
  22. Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y. and Yagi, K. Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. Eur. J. Pharm. Biopharm. 72, 626-629 (2009). https://doi.org/10.1016/j.ejpb.2009.03.007
  23. Cho, M., Cho, W.S., Cho, M., Kim, S.J, Han, B.S., Kim, S.H., Kim, H.O., Sheen Y.Y and Jeong, J. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol. Lett. 189, 177-183 (2009). https://doi.org/10.1016/j.toxlet.2009.04.017