DOI QR코드

DOI QR Code

Research Trends of Ecotoxicity of Nanoparticles in Soil Environment

  • Lee, Woo-Mi (Department of Environmental Science, Konkuk University) ;
  • Kim, Shin-Woong (Department of Environmental Science, Konkuk University) ;
  • Kwak, Jin-Il (Department of Environmental Science, Konkuk University) ;
  • Nam, Sun-Hwa (Department of Environmental Science, Konkuk University) ;
  • Shin, Yu-Jin (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • Received : 2010.10.27
  • Accepted : 2010.11.14
  • Published : 2010.12.01

Abstract

We are consistently being exposed to nanomaterials in direct and/or indirect route as they are used in almost all the sectors in our life. Nations across the worlds are now trying to put global regulation policy on nanomaterials. Sometimes, they are reported to be more toxic than the corresponding ion and micromaterials. Therefore, safety research of nanoparticles has huge implications on a national economics. In this study, we evaluated and analyzed the research trend of ecotoxicity of nanoparticles in soil environment. Test species include terrestrial plants, earthworms, and soil nematode. Soil enzyme activities were also discussed. We found that the results of nanotoxicity studies were affected by many factors such as physicochemical properties, size, dispersion method and test medium of nanoparticle, which should be considered when conducting toxicity researches. In particular, more researches on the effect of physicochemical properties and fate of nanoparticles on toxicity effect should be conducted consistently.

Keywords

References

  1. Asli, S. and Neumann, P.M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ., 32, 577-584. https://doi.org/10.1111/j.1365-3040.2009.01952.x
  2. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A. and Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75, 850-857. https://doi.org/10.1016/j.chemosphere.2009.01.078
  3. Battke, F., Leopold, K., Maier, M., Schmidhalter, U. and Schuster, M. (2008). Palladium exposure of barley: uptake and effects. Plant Biology, 10, 272-276. https://doi.org/10.1111/j.1438-8677.2007.00017.x
  4. Canas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E.H. and Olszyk, D. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem., 27, 1922-1931. https://doi.org/10.1897/08-117.1
  5. Coleman, J.G., Johnson, D.R., Stanley, J.K., Bednar, A.J., Weiss, C.A., Boyd, R.E. and Steevens, J.A. (2010). Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ. Toxicol. Chem., 29, 1575-1580. https://doi.org/10.1002/etc.196
  6. Doshi, R., Braida, W., Christodoulatos, C., Wazne, M. and O’Connor,G. (2008). Nano-aluminum: Transport through sand columns and environmental effects on plants and soil communities. Environ. Res., 106, 296-303. https://doi.org/10.1016/j.envres.2007.04.006
  7. European Committee (2009). Regulation (EC) No. 1223/2009 of the European parliament and of the council of 30 November 2009 on cosmetic products.
  8. Hansch, M. and Emmerling, C. (2010). Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J. Plant Nutr. Soil Sci., 173, 554-558. https://doi.org/10.1002/jpln.200900358
  9. Hoet, P., Bruske-Hohlfeld, I. and Salata, O. (2004). Nanoparticles - known and unknown health risks. J. Nanobiotechnology, 2, 12. https://doi.org/10.1186/1477-3155-2-12
  10. Hu, C.W., Li, M., Cui, Y.B., Li, D.S., Chen, J. and Yang, L.Y. (2010). Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol. Biochem., 42, 586-591. https://doi.org/10.1016/j.soilbio.2009.12.007
  11. Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A. and Miyamoto, Y. (2008). Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing. Dev., 129, 322-331. https://doi.org/10.1016/j.mad.2008.02.011
  12. KORTRACT (2010). Analyst report; 나노물질 규제 동향 및 대응 방안: 유럽연합, 미국, 대만, 우리나라의나노물질 규제 동향, BSC Report 312-10-035.
  13. Kumari, M., Mukherjee, A. and Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ., 407, 5243-5246. https://doi.org/10.1016/j.scitotenv.2009.06.024
  14. Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.-C., Braam, J. and Alvarez, P.J.J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem., 29, 669-675. https://doi.org/10.1002/etc.58
  15. Lee, W.M., An, Y.J., Yoon, H. and Kweon, H.S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem., 27, 1915-1921. https://doi.org/10.1897/07-481.1
  16. Lin, D. and Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut, 150, 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
  17. Lin, D. and Xing, B. (2008). Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol., 42, 5580-5585. https://doi.org/10.1021/es800422x
  18. Lin, S., Reppert, J., Hu, Q., Hudson, J.S., Reid, M.L., Ratnikova, T.A., Rao, A.M., Luo, H. and Ke, P.C. (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5, 1128-1132.
  19. Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J. and Fang, X. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett., 9, 1007-1010. https://doi.org/10.1021/nl803083u
  20. Loipez-Moreno, M.L., de la Rosa, G., Hernaindez-Viezcas, J.A., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ. Sci. Technol., In press.
  21. Ma, H., Bertsch, P.M., Glenn, T.C., Kabengi, N.J. and Williams, P.L. (2009). Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 28, 1324-1330. https://doi.org/10.1897/08-262.1
  22. Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int., 32, 967-976. https://doi.org/10.1016/j.envint.2006.06.014
  23. Nel, A., Xia, T., Madler, L. and Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622-627. https://doi.org/10.1126/science.1114397
  24. OECD (2009). Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials No. 15.
  25. Petersen, E.J., Huang, Q. and Weber, J.W.J. (2008). Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ. Sci. Technol., 42, 3090-3095. https://doi.org/10.1021/es071366f
  26. Roh, J.-Y., Park, Y.-K., Park, K. and Choi, J. (2010). Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ. Toxicol. Phar., 29, 167-172. https://doi.org/10.1016/j.etap.2009.12.003
  27. Roh, J.-Y., Sim, S.J., Yi, J., Park, K., Chung, K.H., Ryu, D.-Y. and Choi, J. (2009). Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics. Environ. Sci. Technol., 43, 3933-3940. https://doi.org/10.1021/es803477u
  28. Scott-Fordsmanda, J.J., Krogha, P.H., Schaeferb, M. and Johansenc, A. (2008). The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotox. Environ. Safe., 71, 616-619. https://doi.org/10.1016/j.ecoenv.2008.04.011
  29. Seeger, E.M., Baun, A., Kästner, M. and Trapp, S. (2009). Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J. Soils Sediments, 9, 46-53. https://doi.org/10.1007/s11368-008-0034-0
  30. Stampoulis, D., Sinha, S.K. and White, J.C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol., 43, 9473-9479. https://doi.org/10.1021/es901695c
  31. Tan, X.-M., Lin, C. and Fugetsu, B. (2009). Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 47, 3479-3487. https://doi.org/10.1016/j.carbon.2009.08.018
  32. Tong, Z., Bischoff, M., Nies, L., Applegate, B. and Turco, R.F. (2007). Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol., 41, 2985-2991. https://doi.org/10.1021/es061953l
  33. UBA (2009). Nanotechnology for humans and the environment; Promote opportunites and reduce risks.
  34. United Nations Environment Programme (2007). GEO Year Book 2007; An overview of our changing environment. Emerging challenges- Nanotechnology and the Environment.
  35. Wang, H., Wick, R.L. and Xing, B. (2009). Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut, 157, 1171-1177. https://doi.org/10.1016/j.envpol.2008.11.004
  36. Yang, L. and Watts, D.J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett., 158, 122-132. https://doi.org/10.1016/j.toxlet.2005.03.003
  37. Zhu, H., Han, J., Xiao, J.Q. and Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monitor., 10, 713-717. https://doi.org/10.1039/b805998e
  38. http://www.nanotechproject.org/inventories/consumer/analysis_draft/

Cited by

  1. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants vol.46, pp.17, 2012, https://doi.org/10.1021/es202995d
  2. Phytotoxicity of nanoparticles—problems with bioassay choosing and sample preparation vol.21, pp.17, 2014, https://doi.org/10.1007/s11356-014-2865-0
  3. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae vol.7, pp.1-2, 2017, https://doi.org/10.1007/s13204-016-0542-y