• 제목/요약/키워드: Nanofibre

검색결과 4건 처리시간 0.014초

Crystallization Behaviour of PP and Carbon Nanofibre Blends

  • Chatterjee, A.;Deopura, B.L.
    • Fibers and Polymers
    • /
    • 제4권3호
    • /
    • pp.102-106
    • /
    • 2003
  • Crystallization behaviour of blends of different MFI isotactic polypropylenes (PP), and blends of PP with carbon nanofibre have been investigated by DSC and polarizing optical microscope. Both higher MFI PP component and the carbon nanofibre in the blend influence the nucleation activity of the melt during non-isothermal crystallization. In presence of carbon nanofibre, the sherulitic growth rate is highly disturbed. The calculation of nucleation activity indicates that carbon nanofibres act as active substrate for heterogeneous nucleation.

CNT 및 CNF를 이용하여 제조된 전극 촉매 및 막 전극 접합체의 특성 (The Characteristic of Prepared Electrode Catalyst and MEA using CNF and CNT)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.59-64
    • /
    • 2004
  • 고분자 전해질 연료전지의 성능은 촉매 지지 물질의 특성에 의존한다. 본 연구에서는 백금 촉매의 지지체로서 CNF(carbon nanofibre)와 CNT(carbon nanotube)를 사용하였다. CNF와 CNT는 기상화학증착법과 메카노케미컬 공정에 의해 처리된 촉매를 이용하여 합성되었다. 백금은 고분자 전해질 연료전지의 적용을 위하여 CNF와 CNT로 지지되었다. 그 결과, 65 nm의 직경을 가지는 twisted CNF로 준비된 MEA가 가장 우수한 I-V 특성을 나타내는 것이 확인되었다.

  • PDF

Carbon Nanotubes and Nanofibre: An Overview

  • Chatterjee, A.;Deopura, B.L.
    • Fibers and Polymers
    • /
    • 제3권4호
    • /
    • pp.134-139
    • /
    • 2002
  • Carbon nanotubes are graphene sheets rolled up in cylinders with diameter as small as 1nm. Extensive work carried out in recent years has revealed the intriguing properties of this novel material. Exceptional property combined with low density of nanotubes makes them suitable for use as reinforcements in composites. Low volume of production and high cost is the main limitations towards their growth and application. Nanofibres bridge the gap between the conventional carbon fibre and the carbon nanotubes. With their low cost & comparatively higher volume of production along with their exceptional properties, the nanofibres are considered attractive material as nanoscale reinforcement. In this article a concise review of structure, property. production and application of carbon nanotubes and nanofibres have been discussed.

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.