Crystallization Behaviour of PP and Carbon Nanofibre Blends

  • Chatterjee, A. (Department of Textile Technology) ;
  • Deopura, B.L. (Department of Textile Technology)
  • Published : 2003.09.01

Abstract

Crystallization behaviour of blends of different MFI isotactic polypropylenes (PP), and blends of PP with carbon nanofibre have been investigated by DSC and polarizing optical microscope. Both higher MFI PP component and the carbon nanofibre in the blend influence the nucleation activity of the melt during non-isothermal crystallization. In presence of carbon nanofibre, the sherulitic growth rate is highly disturbed. The calculation of nucleation activity indicates that carbon nanofibres act as active substrate for heterogeneous nucleation.

Keywords

References

  1. B. L. Deopura and S. Kadam, J. Appl. Polym. Sci., 31, 2145 (1986) https://doi.org/10.1002/app.1986.070310718
  2. S. J. Mahajan, K. Bhaumik, and B. L. Deopura, J. Appl. Polym. Sci., 43, 49 (1991) https://doi.org/10.1002/app.1991.070430107
  3. A. Chatterjee and B. L. Deopura, Fiber Polym., 3, 134 (2002) https://doi.org/10.1007/BF02912657
  4. A. K. Lau and D. Hui, Composites, Part B, 33, 263-277 (2002) https://doi.org/10.1016/S1359-8368(02)00012-4
  5. E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technol.,61, 1899-1912 (2001) https://doi.org/10.1016/S0266-3538(01)00094-X
  6. K. Lozano and E. V. Barrera, J. Appl. Polym. Sci., 79, 125-133 (2001) https://doi.org/10.1002/1097-4628(20010103)79:1<125::AID-APP150>3.0.CO;2-D
  7. R. D. Patton, C. U. Pittman Jr., L. Wang, and 1. R. Hill, Compos., Part A- Appl. Sci., 30, 1081-1091 (1999) https://doi.org/10.1016/S1359-835X(99)00018-4
  8. S. A. Gordeyev, J. A. Ferreira, C. A. Bernardo, and I. M. Ward, Mat. Lett., 51, 32-36(2001) https://doi.org/10.1016/S0167-577X(01)00260-9
  9. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, and D. A. Schiraldi, Polymer, 43, 1701-1703 (2002) https://doi.org/10.1016/S0032-3861(01)00744-3
  10. J. Li, C. Zhou, and W. Gang, Polym. Test., 22, 217 (2003) https://doi.org/10.1016/S0142-9418(02)00085-5
  11. H. E. Kissinger, J. Res. Natl. Stand., 57, 217 (1956) https://doi.org/10.6028/jres.057.026
  12. A. Dobreva and I. Gutzow, J. Non-crystalline Solids, 162, 1 (1993) https://doi.org/10.1016/0022-3093(93)90736-H
  13. A. Dobreva and I. Gutzow, J. Non-crystalline Solids, 162, 13-25(1993) https://doi.org/10.1016/0022-3093(93)90737-I
  14. G. Bogoeva-Gaceva, A. Janevski, and E. Mader, Polymer, 42, 4409-4416 (2001) https://doi.org/10.1016/S0032-3861(00)00659-5
  15. J. L. Thomason and A. A. VanRooyen, J. Mat. Sci., 27, 889-896(1992) https://doi.org/10.1007/BF01197638
  16. J. Verga and J. Krager-Kocsis, J. Mat. Sci. Lett., 13, 1069 (1994)
  17. E. Assouline, R. Fulchiron, J.-F. Gerard, E. Wachtel, H. D. Wagner, and G. Marom, J. Polym. Sci., Part B, Polym. Phys., 37, 2534-2538 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2534::AID-POLB24>3.0.CO;2-P
  18. T. E. Sukhanova, F. Lednicky, J. Urban, Y. G. Baklagina, G. M. Mikhailov, and V. V. Kudryavstev, J. Mat. Sci., 30, 2201-2214 (1995) https://doi.org/10.1007/BF01184562