Carbon Nanotubes and Nanofibre: An Overview

  • Chatterjee, A. (Department of Textile Technology, IIT Delhi, India) ;
  • Deopura, B.L. (Department of Textile Technology, IIT Delhi, India)
  • Published : 2002.12.01

Abstract

Carbon nanotubes are graphene sheets rolled up in cylinders with diameter as small as 1nm. Extensive work carried out in recent years has revealed the intriguing properties of this novel material. Exceptional property combined with low density of nanotubes makes them suitable for use as reinforcements in composites. Low volume of production and high cost is the main limitations towards their growth and application. Nanofibres bridge the gap between the conventional carbon fibre and the carbon nanotubes. With their low cost & comparatively higher volume of production along with their exceptional properties, the nanofibres are considered attractive material as nanoscale reinforcement. In this article a concise review of structure, property. production and application of carbon nanotubes and nanofibres have been discussed.

Keywords

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162 (1985) https://doi.org/10.1038/318162a0
  2. S. Ijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  3. S. Ijima and T. Ichihasi, Nature, 363, 603 (1993) https://doi.org/10.1038/353603a0
  4. R. P. Feynman, J. Microelectromech. Syst., 1, 60 (1992) https://doi.org/10.1109/84.128057
  5. J. P. Lu, J. Phys. Chem. Solids, 58, 1649 (1997) https://doi.org/10.1016/S0022-3697(97)00045-0
  6. F. Li, B. S. Cheng, and G. Su, Appl. Phys. Lett., 77, 3161 (2000) https://doi.org/10.1063/1.1324984
  7. C. Journet and P. Bernier, Appl. Phys. A, 67, 1 (1998) https://doi.org/10.1007/s003400050465
  8. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, A. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature, 388, 756 (1997) https://doi.org/10.1038/41972
  9. B. I. Yakobson and R. E. Smalley, Am Scient, 85(4) (1997)
  10. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. TodriquezMacias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, Appl. Phys. A, 67, 29 (1998) https://doi.org/10.1007/s003400050470
  11. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto, and A. Sarkar, Carbon, 33, 873 (1995) https://doi.org/10.1016/0008-6223(95)00016-7
  12. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett., 313, 91 (1999) https://doi.org/10.1016/S0009-2614(99)01029-5
  13. R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, and M. E. Welland, Science, 292, 1136 (2001) https://doi.org/10.1126/science.1057823
  14. D. S. Belhune, C. H. Kiang, M. S. DeVries, G. Gorman, R. Savoy, and R. Beyers, Nature, 363, 605 (1993) https://doi.org/10.1038/363605a0
  15. L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl. Phys. Lett., 72, 3399 (1998) https://doi.org/10.1063/1.121677
  16. W. K. Maser, A. M. Benito, and M. T. Martinez, Carbon, Article in press (2002)
  17. E. T. Thostenson, Z. Ren, and T. W. Chou, Composites Science and Technology, 61, 1899 (2001) https://doi.org/10.1016/S0266-3538(01)00094-X
  18. M. Ge and K. Sattler, Appl. Phys. Lett., 64(6), 710 (1994)
  19. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Rouff, Chem. Mater., 10(1), 260 (1998) https://doi.org/10.1021/cm970412f
  20. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, and W. Y. Zho, Science, 274, 1701 (1996) https://doi.org/10.1126/science.274.5293.1701
  21. X. X. Zhang, Z. Q. Li, G. H. Wen, K. K. Fung, J. Chen, and Y. Li, Chem. Phys. Lett., 333(6), 509 (2001)
  22. Z. F. Ren, Z. P. Huang, J. W. Xu, and J. H. Wang, Appl. Phys. Lett., 75(8), 1086 (1999) https://doi.org/10.1063/1.124605
  23. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, and M. P. Siegal, Science, 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  24. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, M. P. Siegal, and P. N. Provencio, Appl. Phys. Lett., 73(26), 3845 (1998) https://doi.org/10.1063/1.122912
  25. C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl Phys. Lett., 77(6), 830 (2000)
  26. C. Bower, 0. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl. Phys. Lett., 77(17), 2767 (2000) https://doi.org/10.1063/1.1319529
  27. H. Cui, O. Zhou, and B. R. Stoner, J. Appl. Phys., 88(10), 6072 (2000) https://doi.org/10.1063/1.1320024
  28. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Appl. Phys. Lett., 77(21), 3468 (2000)
  29. Y. C. Choi, Y. M. Shin, Y. H. Lee. B. S. Lee, G. S. Park and W. B. Choi, Appl. Phys. Lett., 76(17), 2367 (2000) https://doi.org/10.1063/1.126348
  30. M. S. Dresselhaus, G. Dresselhaus, and R. Satio, Phys. Rev. B, 45, 6234 (1992) https://doi.org/10.1103/PhysRevB.45.6234
  31. H. Dai, Surface Science, 500, 218 (2002) https://doi.org/10.1016/S0039-6028(01)01558-8
  32. S. Paulson, A. Helser, M. B. Nardeli, R. M. Taylor II, and M. Falvo, Science, 290, 1742 (2000) https://doi.org/10.1126/science.290.5497.1742
  33. M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. Mceuen, Science, 288, 494 (2000) https://doi.org/10.1126/science.288.5465.494
  34. A. Buldum and J. P. Lu, Phys. Rev. B, 6316, 1403 (2001)
  35. B. T. Kelly in 'Physics of Graphite', Appl. Sci., London, 1981
  36. R. S. Ruoffand D. C. Lorents, Carbon, 33, 925 (1995) https://doi.org/10.1016/0008-6223(95)00021-5
  37. M. M. J. Treacy, T. W. Ebbesen, and T. M. Gibson, Nature, 381, 680 (1996)
  38. E. C. Wong, P. E. Sheehan, and C. M. Lieber, Science, 277, 1971 (1997) https://doi.org/10.1126/science.277.5334.1971
  39. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brook, and S. Washburn, Nature, 389, 582 (1997) https://doi.org/10.1038/39282
  40. A. Rochefort, P. Avouris, F. Lesage, and D. R. Salahub, Phys. Rev. B, 60, 13824 (1999) https://doi.org/10.1103/PhysRevB.60.13824
  41. P. Poncharal, Z. L. Wang, D. Ugrate, and W. Heer, Science, 283, 1513 (1999) https://doi.org/10.1126/science.283.5407.1513
  42. C. Q. Ru, Phys. Rev. B, 62, 9973 (2000) https://doi.org/10.1103/PhysRevB.62.9973
  43. C. Q Ru, J. Appl. Phys., 89, 3426 (2001) https://doi.org/10.1063/1.1347956
  44. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, and T. Kelly, Science, 287, 637 (2000) https://doi.org/10.1126/science.287.5453.637
  45. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, and A. J. Kulik, Phys. Rev. Lett., 82(5), 944 (1999) https://doi.org/10.1103/PhysRevLett.82.944
  46. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, and K. A. Smith, Appl. Phys. Lett., 74(25), 3803 (1999)
  47. D. Srivastava, M. Menon, and C. Kyeongjae, Phys. Rev. Lett., 83(15), 2973 (1999) https://doi.org/10.1103/PhysRevLett.83.2973
  48. M. Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B, 57(8), R4277 (1998) https://doi.org/10.1103/PhysRevB.57.R4277
  49. N. M. Rodriquez, J. Mater. Res., 8, 3233 (1993) https://doi.org/10.1557/JMR.1993.3233
  50. C. H. Bartholomew, Catal. Rev. Sci. Eng., 24, 67 (1982) https://doi.org/10.1080/03602458208079650
  51. D. L. Trim, Catal. Rev. Sci. Eng., 16, 155 (1977) https://doi.org/10.1080/03602457708079636
  52. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth, 32, 335 (1976) https://doi.org/10.1016/0022-0248(76)90115-9
  53. R. T. K. Baker, Carbon, 27(3), 315 (1989) https://doi.org/10.1016/0008-6223(89)90062-6
  54. G. G. Tibbetts, J. Cryst. Growth, 66, 632 (1984) https://doi.org/10.1016/0022-0248(84)90163-5
  55. G. G. Tibbetts, Carbon, 30, 399 (1992) https://doi.org/10.1016/0008-6223(92)90037-W
  56. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Science, 278, 100 (1997) https://doi.org/10.1126/science.278.5335.100
  57. P. L. McEuen, Nature, 393, 15 (1998) https://doi.org/10.1038/29874
  58. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science, 275, 1922 (1997) https://doi.org/10.1126/science.275.5308.1922
  59. S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, and C. Dekker, Nature, 394, 761 (1998) https://doi.org/10.1038/29494
  60. A. K. Lau and D. Hui, Composites B, 33, 267 (2002) https://doi.org/10.1016/S1359-835X(01)00097-5