• 제목/요약/키워드: Nanoclay

검색결과 56건 처리시간 0.033초

Environmently Friendly Glass Fiber and Nanoclay Reinforced Polyurethane Foam

  • Lee, Sung-Ho;Kim, Sung-Hee;Lim, Ho;Kim, Byung-Kyu
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.373-373
    • /
    • 2006
  • Rigid polyurethane foams(PUFs) are widely used in most areas of insulations such as storage tank and pipe line for transporting liquefied gas. Glass fiber and nanoclay are used for improvement in mechanical property and thermal insulation of rigid PUF at very low temperature(<$-150^{\circ}C$). These rigid PUFs have been characterized in terms of thermal, mechanical, dynamic mechanical properties and cell morphology. It was found that mechanical properties, thermal conductivity and dimensional stability of rigid PU foams were improved by glass fiber and nanoclay.

  • PDF

Epoxy-nanoclay composite 제작과 전기적 특성 (The Fabrication of Epoxy-nanoclay composite and electrical properties)

  • 노현지;이성갑;안병립;원우식;이창공
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1222-1223
    • /
    • 2008
  • Nanocomposites of a epoxy resin are synthesized and evaluated. the present study investigated the effect of nanoclay additives on the properties of diglycidyl ether or bisphenol A(DGEBA) epoxy resin. DGEBA was mixed with 3$\sim$7 wt% organically modified layered silicate, Cloisite 30B for three hours. The average grain size of the specimens decreased with adding Cloisite 30B. The dielectric constant showed between 3.2$\sim$3.5 and the dielectric loss showed between 3.2$\sim$5.7 % in all specimens. Dielectric strength showed a best valu of 20.8 kV/mm at added with Cloisite 30B 5 wt%.

  • PDF

Mechanical Behavior of Shape Memory Fibers Spun from Nanoclay-Tethered Polyurethanes

  • Hong, Seok-Jin;Yu, Woong-Ryeol;Youk, Ji-Ho
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.644-650
    • /
    • 2008
  • This study examined the effect of nanoclays on the shape memory behavior of polyurethane (PU) in fibrous form. A cation was introduced into the PU molecules to disperse the organo-nanoclay (MMT) into poly($\varepsilon$-caprolactone) (PCL)-based PU (PCL-PU). The MMT/PCL-PU nanocomposites were then spun into fibers through melt-processing. The shape memory performance of the spun fibers was examined using a variety of thermo-mechanical tests including a new method to determine the transition temperature of shape memory polymers. The MMTs showed an improved the fixity strain rate of the MMT /PCL- PU fibers but a slight decrease in their recovery strain rate. This was explained by the limited movement of PU molecules due to the presence of nanoclays. The shape memory performance of the MMT/PCL-PU fibers was not enhanced significantly by the nanoclays. However, their recovery power was improved significantly up to a strain of approximately 50%.

Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay

  • WIBOWO, Eko Setio;LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.453-461
    • /
    • 2021
  • In wood-based composite panels, low-molar ratio (LMR) urea-formaldehyde (UF) resins usually result in reduced formaldehyde emission (FE) at the expense of poor adhesion. However, the FE and adhesion of medium-density fiberboard (MDF) bonded with LMR UF resins were both improved in this study. The modified LMR UF resins with transition metal ion-modified bentonite (TMI-BNT) nanoclay simultaneously improved the FE and adhesion of MDF panels. The modified LMR UF resins with 5% TMI-BNT resulted in a 37.1% FE reduction and 102.6% increase in the internal bonding (IB) strength of MDF panels. Furthermore, thickness swelling and water absorption also significantly decreased to 13.0% and 24.9%, respectively. These results imply that TMI-BNT modification of LMR UF resins could enhance the formation of a three-dimensional network rather than crystalline domains, resulting in improved cohesion.

Kinetics of Thermal Degradation of Polypropylene/Nanoclay/Wood Flour Nanocomposites

  • Mohan, D. Jagan;Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Park, Byung-Dae;Wu, Qinglin
    • 한국응용과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.278-286
    • /
    • 2007
  • As a part of enhancing the performance of wood-plastic composites (WPC), polypropylene (PP)/ nanoclay (NC)/ wood flour (WF) nanocomposites were prepared using melt blending and injection molding process to evaluate their thermal stability. Thermogravimetric analysis (TGA) was employed to investigate thermal degradation kinetics of the nanocomposites both dynamic and isothermal conditions. Dynamic scans of the TGA showed an increased thermal stability of the nanocomposites at moderate wood flour concentrations (up to 20 phr, percentage based on hundred percent resin) while it decreased with the addition of 30 phr wood flour. The activation energy $(E_a)$ of thermal degradation of nanocomposites increased when nanoclay was added and the concentration of wood flour increased. Different equations were used to evaluate isothermal degradation kinetics using the rate of thermal degradation of the composites, expressed as weight loss (%) from their isothermal TGA curves. Degradation occurred at faster rate in the initial stages of about 60 min., and then proceeded in a gradual manner. However, nanocomposites with wood flour of 30 phr heated at $300^{\circ}C$ showed a drastic difference in their degradation behavior, and reached almost a complete decomposition after 40 min. of the isothermal heating. The degree of decomposition was greater at higher temperatures, and the residual weight of isothermal degradation of nanocomposites greatly varied from about 10 to 90%, depending on isothermal temperatures. The isothermal degradation of nanocomposites also increased their thermal stability with the addition of 1 phr nanoclay and of wood flour up to 20 phr. But, the degradation of PP100/NC1/MAPP3/WF30 nanocomposites with 30 phr wood flour occurs at a faster rate compared to those of the others, indicating a decrease in their thermal stability.

층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동 (Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay)

  • 맨사비스마르크;김성진;이대학;김한길;오종갑;나창운
    • Elastomers and Composites
    • /
    • 제49권1호
    • /
    • pp.43-52
    • /
    • 2014
  • 브롬화 이소부틸 이소프렌 (BIIR) 고무의 점착성에 미치는 나노점토(Cloisite 20A)의 영향을 조사하였다. 고무내 나노점토의 분산성은 SEM, TEM, XRD으로 분석하였다. 나노점토 충전 및 미충전 고무의 열적안정성은 TGA로 분석하였으며, 충전고무에서 열적안정성을 보였다. 또한 나노점토를 첨가하면 보강효과에 의해 고무의 강도가 증가하였다. 나노점토 첨가로 계면간 분자확산 정도는 감소할 것으로 판단되었지만, 본 연구에서 관찰된 분자확산에 의해 형성된 계면의 두께는 분자사슬간 엄킴현상을 유발하는데 충분하여 계면점착력이 증가하는 것으로 나타났다. 계면점착력 증가현상은 일정한 이상 (8 phr)의 나노점토가 첨가되었을 때 나타났다. 나노점토 첨가에 따른 표면특성의 변화를 조사하기 위해 접촉각 측정을 하였는데 큰 변화는 관찰되지 않았다.

식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발 (Development of High Performance Nanocomposites using Functionalized Plant Oil Resins)

  • 한송이;정영희;오정석;강신영;홍창국
    • Elastomers and Composites
    • /
    • 제47권1호
    • /
    • pp.2-8
    • /
    • 2012
  • 본 연구에서는 식물성 오일로부터 여러 가지 기능기를 가진 soybean resin(AESO, MAESO)을 제조하였으며, nanoclay를 사용하여 새로운 고기능성 바이오-나노 복합 재료를 개발하였다. 또한 제조된 soybean resin을 바인더로 이용하여 $TiO_2$ 광전극을 제조하고 친환경 염료감응형 태양전지를 개발하다. 제조된 나노복합재료의 형태는 고분자의 삽입에 의해 층간 간격이 증가된 형태와 박리된 형태를 조절하였으며 나노 클레이 함량이 증가됨에 따라 물리적 성질이 증가하였다. 또한 COOH기가 첨가된 MAESO에서 분산도가 향상되었고 초음파 처리에 의해 분산도가 더욱 향상되어 물리적 특성이 현저히 향상되었다. 또한 $TiO_2$를 질산처리 한 후 soybean resin을 바인더로 이용하여 나노 다공성 $TiO_2$ 광전극을 제조하였으며 염료를 흡착시킨 후 염료감응형 태양전지를 제조하였다. AESO와 MAESO를 바인더로 제조한 $TiO_2$ 광전극에서는 향상된 분산성과 표면적 증가로 인해 염료 흡착량이 증가하였다. 이로 인해 높은 전류밀도를 나타내었으며, 첨가된 기능기의 영향으로 $TiO_2$ 계면의 저항이 낮아져 매우 좋은 광전기화학적 특성과 높은 효율을 나타내었다.

고분자-세라믹 나노 컴포지트의 제작과 전기적 특성 (The Fabrication of polymer-nanoclay composite and electric properties)

  • 노현지;이성갑;남성필;안병립;원우식;우형관;박상만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.257-258
    • /
    • 2009
  • Nanocomposites of a epoxy resin are synthesized and evaluated the present study investigated. The effect of nanoclay additives on the properties of diglycidyl ether or bisphenol A(DGEBA) epoxy resin. DGEBA was mixed with 3~7 wt% organically modified layered silicate, Cloisite 30B for three hours. The average grain size of the specimens decreased with adding Cloisite 30B. The dielectric constant showed between 3.2 ~ 3.5 and the dielectric loss showed between 3.2 ~ 5.7 % in all specimens.

  • PDF