DOI QR코드

DOI QR Code

Kinetics of Thermal Degradation of Polypropylene/Nanoclay/Wood Flour Nanocomposites

  • Mohan, D. Jagan (Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Sun-Young (Department of Forest Products, Korea Forest Research Institute) ;
  • Kang, In-Aeh (Department of Forest Products, Korea Forest Research Institute) ;
  • Doh, Geum-Hyun (Department of Forest Products, Korea Forest Research Institute) ;
  • Park, Byung-Dae (Department of Wood Sci. & Tech., Kyungpook National University) ;
  • Wu, Qinglin (School of Renewable Natural Resources, Louisiana State University)
  • Published : 2007.09.30

Abstract

As a part of enhancing the performance of wood-plastic composites (WPC), polypropylene (PP)/ nanoclay (NC)/ wood flour (WF) nanocomposites were prepared using melt blending and injection molding process to evaluate their thermal stability. Thermogravimetric analysis (TGA) was employed to investigate thermal degradation kinetics of the nanocomposites both dynamic and isothermal conditions. Dynamic scans of the TGA showed an increased thermal stability of the nanocomposites at moderate wood flour concentrations (up to 20 phr, percentage based on hundred percent resin) while it decreased with the addition of 30 phr wood flour. The activation energy $(E_a)$ of thermal degradation of nanocomposites increased when nanoclay was added and the concentration of wood flour increased. Different equations were used to evaluate isothermal degradation kinetics using the rate of thermal degradation of the composites, expressed as weight loss (%) from their isothermal TGA curves. Degradation occurred at faster rate in the initial stages of about 60 min., and then proceeded in a gradual manner. However, nanocomposites with wood flour of 30 phr heated at $300^{\circ}C$ showed a drastic difference in their degradation behavior, and reached almost a complete decomposition after 40 min. of the isothermal heating. The degree of decomposition was greater at higher temperatures, and the residual weight of isothermal degradation of nanocomposites greatly varied from about 10 to 90%, depending on isothermal temperatures. The isothermal degradation of nanocomposites also increased their thermal stability with the addition of 1 phr nanoclay and of wood flour up to 20 phr. But, the degradation of PP100/NC1/MAPP3/WF30 nanocomposites with 30 phr wood flour occurs at a faster rate compared to those of the others, indicating a decrease in their thermal stability.

Keywords

References

  1. H. Nathani, A. Dasari, and R. Misra, On the reduced susceptibility to stress whitening behavior of melt intercalated polybutene/clay nanocomposites during tensile straining, Acta Mat., 52, 3217 (2004) https://doi.org/10.1016/j.actamat.2004.03.021
  2. R. Hadal, Q. Yuan, J. Jog, and R Misra, On stress whitening during surface deformation in clay-containing polymer nanocornposites: A microstructural approach, Mat. Sci. Eng. A., 418, 268 (2006) https://doi.org/10.1016/j.msea.2005.11.032
  3. A. Blumstein, Polymerization of adsorbed rnonolayers: II. Thermal degradation of the inserted polymers, J. Polym Sci. A, 3, 2665 (1965)
  4. M. Alexandre and P. Dubois, Polymer layered silicate nanocomposites: Preparation, properties and uses of new class of materials, Mat. Sci. Eng., 28, 1 (2000) https://doi.org/10.1016/S0927-796X(00)00012-7
  5. D. Wang, D. Parlow, Q. Yao, and C. Wilkie, Melt blending preparation PVC sodium clay nanocomposites, J. Vinyl and Additive Technol., 8, 139 (2002) https://doi.org/10.1002/vnl.10354
  6. C. Wan, X. Qiao, Y. Zhang, and Y. Zhang, Effect of different clay treatment on morphology and mechanical properties of PVC/clay nanocomposies, Polym Test., 22, 453 (2003) https://doi.org/10.1016/S0142-9418(02)00126-5
  7. F. Coutinho and T. Costa, Performance of polypropylenewood fiber composites, Polym. Test., 18, 581 (1999) https://doi.org/10.1016/S0142-9418(98)00056-7
  8. J. Nam and J. Seferis, Generalized composite degradation kinetics of polymeric systems under isothermal and nonisothermal conditions, J. Polym. Phys., 30, 455 (1992) https://doi.org/10.1002/polb.1992.090300505
  9. Y. Ghim, Analysis of plastics pyrolysis in thermogravimetic analyzer by an Arrhenius-type rate equation including the effect of transfer lag, Hwahak Konghak, 29, 503 (1991)
  10. J. Du, D. Wang, C. Wilkie, and J. Wang, An XPS investigation of thermal degradation and charring on poly(vinyl chloride)clay nanocomposites, Polym. Degra. Stab., 79, 319 (2003) https://doi.org/10.1016/S0141-3910(02)00295-1
  11. P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, and R. Mulhaupt, Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification, Macromol. Mat. Eng., 275, 8 (2000) https://doi.org/10.1002/(SICI)1439-2054(20000201)275:1<8::AID-MAME8>3.0.CO;2-6
  12. E. Manias, A. Touny, L. Wu, K. Stawhecker, B. Lu, and T. Chung, Polypropylene/Montmorillonite Nano-composites: Review of the synthetic routes and materials, Chem of Mat., 13, 3516 (2001) https://doi.org/10.1021/cm0110627
  13. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Karnigaito, Synthesis and properties of polyimide-clay hybrid, J. Appl. Polym. Sci., Polym. Chem., 31, 2493 (1993) https://doi.org/10.1002/pola.1993.080311009
  14. X. Liu and Q. Wu, Polyamide 66/Clay Nanocomposites via Melt Intercalation, Macromol. Mat. Eng., 287, 180 (2002) https://doi.org/10.1002/1439-2054(20020301)287:3<180::AID-MAME180>3.0.CO;2-T
  15. N. Hasegawa, H. Okamoto, M. Kawasumi and A. Usuki, Preparation and mechanical properties of polystyrene-clay hybrids, J. Appl. Polymer, Sci., 74, 3359 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3359::AID-APP9>3.0.CO;2-2
  16. C. Park, O. Park, J. Lim, and H. Kim, The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties, Polymer, 42, 7465 (2001) https://doi.org/10.1016/S0032-3861(01)00213-0
  17. P. Messersmith and E. Giannelis, Polymer-layered silicate nanocornposites: in situ intercalative polymerization of epsilon.-caprolactone in layered silicates, Chem Mat., 5, 1064 (1993) https://doi.org/10.1021/cm00032a005
  18. A. Coats and J. Redfern, Kinetics parameters from thermogravimetric data, Nature, 201, 68 (1964) https://doi.org/10.1038/201068a0
  19. T. Ozwa, A new method of analyzing thermogravimetic data, Bull. Chem. Soc. Japan, 38, 1881 (1965) https://doi.org/10.1246/bcsj.38.1881
  20. S. Oh, H. Lee, H. Kim, and K. Yoo, Kinetics of nonisothermal thermal degradation of styrene-butadiene rubber, J. Chem Eng., 16, 543 (1999)
  21. H. Kim, H. Yang, H. Kim, B. Lee and T. Hwang, Thermal properties of agro-flour-filled biodegradable polymer bio-cornposites, J. Therm Anal. Cal., 81, 299 (2005) https://doi.org/10.1007/s10973-005-0782-7
  22. A. Espert, W. Camacho, and S. Karlson, Thermal and thermomechanical properties of biocomposites made from modified recycled cellulose and recycled polypropylene, J. Appl. Polym. Sci., 89, 2353 (2003) https://doi.org/10.1002/app.12091
  23. H. Hatakeyema, N. Tanamachi, H. Matsumura, S. Hirose and T. Hatakeyama, Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry, Thermochim Acta, 431, 155 (2005) https://doi.org/10.1016/j.tca.2005.01.065
  24. S. Mohanty, S. Verma, and S. Nayak, Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites, Comp. Sci. Tech., 66, 538 (2006) https://doi.org/10.1016/j.compscitech.2005.06.014
  25. S. Ray and M. Okamoto, Polymer/layered silicate nanocornposites: A review from preparation to processing, Prog. in Polym. Sci., 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  26. M. Azizi-Samir, F. Alloin, and A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomolecules, 6, 612 (2005)