DOI QR코드

DOI QR Code

Development of High Performance Nanocomposites using Functionalized Plant Oil Resins

식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발

  • Han, Song-Yi (School of Applied Chemical Engineering, Chonnam National University) ;
  • Jung, Young-Hee (School of Applied Chemical Engineering, Chonnam National University) ;
  • Oh, Jeong-Seok (Polymeric Materials Research Team, Hyundai Motor R&D Division) ;
  • Kaang, Shin-Young (School of Applied Chemical Engineering, Chonnam National University) ;
  • Hong, Chang-Kook (School of Applied Chemical Engineering, Chonnam National University)
  • 한송이 (전남대학교 신화학소재공학과 응용화학공학부) ;
  • 정영희 (전남대학교 신화학소재공학과 응용화학공학부) ;
  • 오정석 (현대자동차 연구개발본부 고분자재료연구팀) ;
  • 강신영 (전남대학교 신화학소재공학과 응용화학공학부) ;
  • 홍창국 (전남대학교 신화학소재공학과 응용화학공학부)
  • Received : 2012.01.09
  • Accepted : 2012.01.26
  • Published : 2012.03.31

Abstract

In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.

본 연구에서는 식물성 오일로부터 여러 가지 기능기를 가진 soybean resin(AESO, MAESO)을 제조하였으며, nanoclay를 사용하여 새로운 고기능성 바이오-나노 복합 재료를 개발하였다. 또한 제조된 soybean resin을 바인더로 이용하여 $TiO_2$ 광전극을 제조하고 친환경 염료감응형 태양전지를 개발하다. 제조된 나노복합재료의 형태는 고분자의 삽입에 의해 층간 간격이 증가된 형태와 박리된 형태를 조절하였으며 나노 클레이 함량이 증가됨에 따라 물리적 성질이 증가하였다. 또한 COOH기가 첨가된 MAESO에서 분산도가 향상되었고 초음파 처리에 의해 분산도가 더욱 향상되어 물리적 특성이 현저히 향상되었다. 또한 $TiO_2$를 질산처리 한 후 soybean resin을 바인더로 이용하여 나노 다공성 $TiO_2$ 광전극을 제조하였으며 염료를 흡착시킨 후 염료감응형 태양전지를 제조하였다. AESO와 MAESO를 바인더로 제조한 $TiO_2$ 광전극에서는 향상된 분산성과 표면적 증가로 인해 염료 흡착량이 증가하였다. 이로 인해 높은 전류밀도를 나타내었으며, 첨가된 기능기의 영향으로 $TiO_2$ 계면의 저항이 낮아져 매우 좋은 광전기화학적 특성과 높은 효율을 나타내었다.

Keywords

References

  1. 조동환, 바이오복합재료, 고분자 과학과 기술, 13, 1 (2002).
  2. 한성옥, 김홍수, 박주석, 안영수, 김준수, 김시경, 유윤종, 조철희, Lawrence T. Drzal, 나노 및 바이오 소재를 이용한 환경친화형 바이오복합재료, 제 19회 에너지절약 기술 Workshop, 한국에너지기술연구원, 2004년 11월 11-12일.
  3. B. K. G. Theng, "Formation and Properties of Clay-Polymer Complexes", Elsevier, Amsterdam (1979).
  4. G. Lagaly, "Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites", Appl. Clay. Sci., 15, 1 (1999). https://doi.org/10.1016/S0169-1317(99)00009-5
  5. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, "Polymer-layered silicate nanocomposites: an overview", Appl, Clay. Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  6. 이상수, 박민, 임순호, 김준경, 황진택, Nanoclay Polymer Nanocomposite의 개발 동향 및 응용, 고분자 과학과 기술, 18, 1 (2007).
  7. T. J. Pinnavaia and G. W. Beall, "Polymer-Clay Nanocomposites", John Wiley & Sons, Chichester (2000).
  8. J. Lu and R. P. Wool, "Sheet molding compound resins from soybean oil: Thickening behavior and mechanical properties", polym. Eng. Sci., 47, 1469 (2007). https://doi.org/10.1002/pen.20846
  9. D. K. Lee et al., Desalination, "Synthesis and characterization of crosslinked triblock copolymers for fuel cells", 233, 104 (2008). https://doi.org/10.1016/j.desal.2007.09.032
  10. M. L. Auad, M. Aranguren, and J. Borrajo, "Epoxy-based divinyl ester resin/styrene copolymers: Composition depend ence of the mechanical and thermal properties", J. Appl. Polym. Sci., 66, 1059 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971107)66:6<1059::AID-APP6>3.0.CO;2-H
  11. R. A. Vaia, B. B. Sauer, O. K. Tse, and E. P. Giannelis, "Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite", J. Polym. Sci. PartB. Polym. Phys., 35, 59 (1997). https://doi.org/10.1002/(SICI)1099-0488(19970115)35:1<59::AID-POLB4>3.0.CO;2-Q
  12. L. Priya and J. P. Jog, "Intercalated poly(vinylidene fluoride)/ clay nanocomposites: Structure and properties", J. polym. Sci. Part B : Polym. Phys., 41, 31 (2003). https://doi.org/10.1002/polb.10355
  13. A. B. Morgan and J. D. Harris, "Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication", Polymer, 45, 8695 (2004) https://doi.org/10.1016/j.polymer.2004.10.067
  14. B. Guo, Z. Liu, L. Hong, and H. Jiang, "Sol gel derived photocatalytic porous $TiO_{2}$ thin films", Surf. Coat. Technol., 198, 24 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.055
  15. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, "Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells", J. Electrochem. Soc., 152, E68 (2005). https://doi.org/10.1149/1.1849776