• Title/Summary/Keyword: Soybean resin

Search Result 19, Processing Time 0.021 seconds

Development of High Performance Nanocomposites using Functionalized Plant Oil Resins (식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발)

  • Han, Song-Yi;Jung, Young-Hee;Oh, Jeong-Seok;Kaang, Shin-Young;Hong, Chang-Kook
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.

Properties of Particleboard Made from Pinus densiflora Thinning Log with Extended Urea-Formaldehyde Resin Adhesive (증량된 요소수지 접착제와 소나무 간벌재로 제조된 파티클보드의 성질)

  • Oh, Yong-Sung;Kwak, Jun-Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.22-26
    • /
    • 2003
  • Particleboards (PBs) were made from Pinus densiflora thinning particle with urea-formaldehyde (UF) resin added casein and soybean as extender. The performance test results of the PB made showed that Pinus densiflora thinning log was suitable raw material for PB. As the extender addition in the UF resin was increased, the mechanical performance of the PB, bonded with the extended UF resin, were significantly decreased. However, casein and soybean can be used up to 15% and 20% of the UF resin solids respectively.

Soybean-based Green Adhesive for Environment-friendly Furniture Material

  • Jeon, Ji-Soo;Lee, Jeong-Hun;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • Over the last decade, Sick Building Syndrome has become a significant social issue in Korea and many methods have been considered to maintain comfortable indoor air quality. To reduce toxic substances emitted from wood composite products, the source control is an efficient method through the reduction of formaldehyde content by using natural material-based adhesives for composite wood products production. Among alternative materials, soybean protein is considered an appropriate natural material to replace formaldehyde-based resin and many efforts have been made to produce new products, such as soap, shampoo, ink, resin, adhesive and textile through changing the chemical or physical properties of soybean. To process soybeans into these useful products, the beans are dehulled and the oil is removed by crushing at very high pressure or by solvent extraction. For use soybean as an adhesive, it is processed at temperatures below $70^{\circ}C$ to preserve the alkaline solubility of the proteins. In addition, soybean-based adhesive is undergone treatment process to improve mechanical properties using urea, urease inhibitor N-(n-butyl) thiophosphoric triamide and sodium dodecyl sulfate. The modified soybean-based adhesive exhibited sufficient mechanical properties to use as an adhesive for composite wood products. This paper is a review article to discuss the possibilities of soybean-based adhesive for environment-friendly furniture materials.

  • PDF

Recovery of Isoflavones from Soybean Cooking Water Produced during Soymilk Manufacturing Process (두유 제조 공정에서 생산되는 대두 침지액으로부터 이소플라본의 회수)

  • Choi, Yeon-Bae;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.522-526
    • /
    • 1997
  • Soy isoflavones could be recovered with adsorption resin column chromatography from soybean cooking water produced during soymilk or tofu manufacturing process. The main isoflavones in the soybean cooking water were genistin and daidzin, and their concentration was $0.083{\pm}0.019$ and $0.11{\pm}0.017\;mM$, respectively. Their aglycones were not detected. pH of soybean cooking water was critical in this chromatographic process and the recovery of isoflavones, both genistin and daidzin, was maximum at pH 4.0. Adsorption of genistin on the resin was stronger than that of daidzin. Elution rate and height/diameter ratio also affected the recovery yield. Under the optimal conditions, about 85% of genistin and 70% of daidzin could be isolated from soybean cooking water. Soy saponins were also recovered with isoflavones.

  • PDF

Physical Properties of Hybrid Poplar Flakeboard Bonded with Alkaline Phenolic Soy Adhesives

  • Yang, In;Kuo, Monlin;Myers, Deland J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.66-75
    • /
    • 2005
  • Soybean-based adhesives have recently been reconsidered as alternatives to petroleum-based adhesives due to the uncertainty of availability of petrochemical products and the increased demand for wood adhesives. This study was conducted to investigate the adhesive properties of alkaline phenolic soy (APS) resin for hybrid poplar flakeboard. The APS resin was formulated by crosslinking an alkaline soy flour hydrolyzate with lab-prepared PF resin in the soy hydrolyzate to PF resin weight ratios of 70/30, 60/40, and 50/50. The APS resins were used to fabricate homogeneous hybrid poplar flakeboards with different resin solid levels (5%, 7%, and 9%), press temperatures (175 and $200^{\circ}C$), and press times of 8 and 10 minutes. The IB, wet MOR, and dimensional stability properties of board improved with increasing press time, press temperature, and PF level in APS resins. Increasing press time can be used to offset poor IB strength associated with a 9% resin solid level and the excessive moisture content in the mat. The following conditions were concluded to meet the requirements of the CSA standard for exterior-grade flakeboard: a 50% PF level, a 5% resin content, a $200^{\circ}C$ press temperature, and an 8 minute press time.

Synthesis of Epoxidized Soybean Oil (ESO) and its Blends with Tetrafunctional Epoxy Resins (Epoxidized soybean oil(ESO)의 합성 및 4 관능성 에폭시 수지/ESO 블렌드 시스템의 물성)

  • Lee, Jae-Rock;Jin, Fan-Long;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • In this work. a potential inexpensive epoxy resin. epoxidized soybean oil (ESO) was synthesized and applied as a toughening agent for 4.4'-tetradiglycidyl diaminodiphenyl methane (TGDDM). The chemical structure of ESO was characterized by FT-IR, $^1H NMR, and ^{13}C NMR$ spectroscopy. The curing behaviors. thermal stabilities. fracture toughness. and flexural strength of TGDDM/ESO blend systems were investigated by using the dynamic DSC. thermogravimetric analysis (TGA). and flexural tests. The thermal stabilities of TGDDM/ESO blend systems were decreased with increasing ESO contents. whereas the critical stress intensity factor ($K_{IC}$) and flexural strength ($\sigma_f$) were increased with ESO contents up to 10 wt% ESO.

  • PDF

Effect of Capsaicin and Silicone Resin Treatment on Inhibition of Thermal Oxidation in Frying Oil (Capsaicin과 규소수지 처리가 튀김유의 가열산화 억제에 미치는 영향)

  • 이미숙;이근보
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.6
    • /
    • pp.534-538
    • /
    • 2000
  • Sample frying oil was manufactured from simple mixing treatment of capsicum. butter flavor and silicone resin. the amount were 0.20, 0.15% ($\omega$/$\omega$) and 10 rpm in soybean oil, respectively. This frying oil was confirmed to improving of heat stability as well as removal effect of meat flavor. Frying oil obtained from treatment of capsicum and silicone resin was appeared, acid value and smoke point were 0.301, 232$\^{C}$, than its value in the non-treated soybean oil were 0.385. 220$\^{C}$, respectively, in the case of continuous frying at 185$\pm$2$\^{C}$. These effects were likely to according both anti-oxidation effect of capsicum and inhibition of free fatty acids and smoke production from anti-expansion of surface area in frying oil. Meat flavor and burnt flavor of oil in the frying oil and fried foods were weakened by treating of butter flavor(0.15%, $\omega$/$\omega$), this effect will be produced to new type\`s frying oil product.

  • PDF

A Study on the Bonding Strength, Reactivity and Thermal Properties of Epoxy Resin Mixed with ESBO (에폭시수지-ESBO 혼용 비율에 따른 목재접착제의 접착력, 반응성 및 열분석에 관한 연구)

  • Choi, Jin Lim;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • The purpose of this study was to investigate thermal stability, reactivity, and bonding strength of existing epoxy resin mixed with the epoxidized soybean oil (ESBO) in order to use soybean oil economically. In the dry shear test, the marked strengths showed $30.5kgf/cm^2$ at the ratio of ESBO to epoxy resin 9 : 1 and $6.2kgf/cm^2$ at the ratio 8 : 2. The bonding strengths of the others, except mixing ratios 2 : 8 and 1 : 9, exceeded the requirement of Korean plywood standard of $7.0kgf/cm^2$. In the wet shear test, the result was $5.8kgf/cm^2$ at the ratio 9 : 1. There were no thickness swelling and moisture absorption in the water resistance of the film. The value of activation energy, Tg (${\Delta}E$), by DSC analysis showed between $110^{\circ}C$ and $120^{\circ}C$ through all ratios. Epoxy in the epoxy resin fully reacted with the hardener (TETA), but it is difficult to decide that epoxys in the ESBO were reacted directly with the hardener from FT-IR analysis. As the mixing ratio of ESBO increased, the thermal stabilities dropped from TGA analysis. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that the ESBO in the mixed adhesive of epoxy resin/ESBO played a role as an extending agent level of epoxy adhesive, and we were able to know that in order to utilize ESBO as an adhesive, a study should be performed on the condition of hardening, inducible of the hardening reaction.

Effects of Blending Fatty Acid-Glycerol-pMDI with Urea-Formaldehyde Resin Adhesives to Their Adhesion for the Use of Soybean Oil (콩기름 이용을 위한 지방산-글리세롤-pMDI와 요소수지 혼용 접착제가 접착성능에 미치는 영향-)

  • You, Young-Sam;Choi, Jin-Lim;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.31-36
    • /
    • 2006
  • This study was conducted to improve the bond strength of plywood bonded with F/U molar ratio urea-formaldehyde (UF) resins modified with the selected FGMDI prepolymer contents for various purposes. The amount of FGMDI was mixed with liquid UF resin at 0 wt% (as control), 2 wt%, 5 wt%, 10 wt%, 25 wt%, and 50 wt% based on the resin solids. As results, in bonding strength, plywood with F/U molar ratio of 1.4 showed the highest value in Type 2 test and all molar ratio UF resins modified with over 25 wt% of the FGMDI showed more than $11kgf/cm^2$, which was satisfied the minimum requirement of KS standard, $7.5kgf/cm^2$, after Type1.5 testing. As F/U molar ratio was increased and the FGMDI addition in the UF resin was increased, average reduction rate of Type 1.5 bonding strength compared with Type 2 was significantly decreased.

Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin (친유성 아크릴 수지로 처리된 폴리프로필렌 편직물의 유흡착 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.528-535
    • /
    • 2016
  • Two types of oleophilic acrylic prepolymers were prepared by the solution copolymerization of either ethyl acrylate (EA) or lauryl acrylate (LA) with hydroxy ethyl acrylate (HEA). For the formation of oil-absorbent materials, a mixed solution of the prepolymer and hexamethylene diisocyanate (HDI) as a cross-linker in toluene was applied to polypropylene knit velvet fabric through the conventional pad-dry-cure procedure. The gel fraction of the crosslinked resin, EA-HEA-HDI, increased with increasing feed ratio of HEA to total acrylate or HDI concentration. The oil absorbancy and retention ratio of the prepared materials were compared according to the add-on ratio of resin to fabric, and were assessed with n-decane, toluene, soybean oil, lubricant and bunker C oil as test oils. The optimal oil absorbancy of the materials were observed at around 6% of the add-on ratio for all these oils except for soybean oil. On the other hand, the oil retention ratio increased as the add-on ratio increased. Futhermore, heavier and more viscous oil generally showed higher oil retention ratios. In addition, the oil absorbancy of the materials treated with LA-HEA-HDI resin was higher than that treated with EA-HEA-HDI resin, which showed that the acrylic resins are more absorptive with increasing length of their side alkyl chain.