• 제목/요약/키워드: Nano-burr

검색결과 9건 처리시간 0.022초

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • 박신영;최광현;강현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

직선화된 와이어의 버 없는 전단기 개발에 관한 연구 (The Development of Burrless Shearing System for Straightened Wire)

  • 조준원;김웅겸;김헌영;김병희
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.121-126
    • /
    • 2005
  • Micro wires manufactured by the straightening process are used in the BT(Bio-Technology), IT(Information-Technology), NT(Nano-Technology). We have developed a novel wire straightener which uses the direct heating method(DHM) for straightening the micro wire and shearing device for burr-less cutting. In this study, we confirm the tendency of micro wire after the shearing process. It is impossible to remove the burr in the shearing process. However, the embodiment of minimum burr size after the shearing process is the best in-process method. In order to minimize the burr size, we have accomplished the various experiment condition such as the U-groove, the effect of the counter punch, the shear angle, clearance.

  • PDF

다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석 (Analysis on FIB-Sputtering Process using Taguchi Method)

  • 이석우;최병열;강은구;홍원표;최헌종
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

냉간 등방압 성형기를 이용한 미세박판 인장시험시편 가공기술 및 정밀 기계적 물성 측정기술 (Manufacturing Technology of Thin Foil Tensile Specimen Using Cold Isostatic Press and Precision Mechanical Property Measurement Technology)

  • 이혜진;박훈재;이낙규;김승수;이형욱;황재혁;박진호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.245-248
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical property. This thin foil tensile specimen manufacturing technology is a method that can make a metal thin foil specimen for micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect that precision mechanical property of micro/nano material and component. Micro and Nano mechanical property can be measured using this technology and mechanical property data base of micro/nano material and component can be constructed.

  • PDF

냉간 등방압 성형기를 이용한 미세박판 인장시편의 가공 및 기계적 물성측정 기술 (Manufacturing Technology of Thin Foil Tensile Specimen Using CIP and Mechanical Property Measurement Technology)

  • 이낙규;박훈재;김승수;이형욱;황재혁;;이혜진
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.509-513
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical properties using micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect precision mechanical property of micro/nano material and component.

2 차원 평판가공법을 이용한 고세장비 미세 격벽어레이구조물 가공 (Study on Machining High-Aspect Ratio Micro Barrier Rib Array Structures using Orthogonal Cutting Method)

  • 박언석;최환진;김한희;전은채;제태진
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1272-1278
    • /
    • 2012
  • The micro barrier rip array structures have been applied in a variety of areas including as privacy films, micro heat sinks, touch panel and optical waveguide. The increased aspect ratio (AR) of barrier rip array structures is required in order to increase the efficiency and performance of these products. There are several problems such as burr, defect of surface roughness and deformation and breakage of barrier rip structure with machining high-aspect ratio micro barrier rip array structure using orthogonal cutting method. It is essential to develop technological methods to solve these problems. The optimum machining conditions for machining micro barrier rip array structures having high-aspect ratio were determined according to lengths ($200{\mu}m$ and $600{\mu}m$) and shape angles ($2.89^{\circ}$ and $0^{\circ}$) of diamond tool, overlapped cutting depths ($5{\mu}m$ and $10{\mu}m$), feed rates (100 mm/s) and three machining processes. Based on the optimum machining conditions, micro barrier rib array structures having aspect ratio 30 was machined in this study.

초정밀 엔드밀링 가공조건 최적화를 통한 금속상의 3차원 이미지 구현 (Realization of 3D Image on Metal Plate by Optimizing Machining Conditions of Ultra-Precision End-Milling)

  • 이재령;문승환;제태진;정준호;김휘;전은채
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.885-891
    • /
    • 2016
  • 3D images are generally manufactured by complex production processes. We suggested a simple method to make 3D images based on a mechanical machining technology in this study. We designed a tetrahedron consisted of many arcs having the depth of $100{\mu}m$ and the pitch of $500{\mu}m$, and machined them on an aluminum plate using end-milling under several conditions of feed-rate and depth of cut. The area of undeformed chip including depth of cut and feed-rate can predict quality of the machined arcs more precisely than the undeformed chip thickness including only feed rate. Moreover, a diamond tool can improve the quality than a CBN tool when many arcs are machined. Based on the analysis, the designed tetrahedron having many arcs was machined with no burr, and it showed different images when observed from the left and right directions. Therefore, it is verified that a 3D image can be designed and manufactured on a metal plate by end-milling under optimized machining conditions.

단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성 (Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold)

  • 김창의;전은채;제태진;강명창
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

나노초 및 피코초 레이저를 이용한 FPCB의 절단특성 분석 (FPCB Cutting Process using ns and ps Laser)

  • 신동식;이제훈;손현기;백병만
    • 한국레이저가공학회지
    • /
    • 제11권4호
    • /
    • pp.29-34
    • /
    • 2008
  • Ultraviolet laser micromachining has increasingly been applied to the electronics industry where precision machining of high-density, multi-layer, and multi material components is in a strong demand. Due to the ever-decreasing size of electronic products such as cellular phones, MP3 players, digital cameras, etc., flexible printed circuit board (FPCB), multi-layered with polymers and metals, tends to be thicker. In present, multi-layered FPCBs are being mechanically cut with a punching die. The mechanical cutting of FPCBs causes such defects as burr on layer edges, cracks in terminals, delamination and chipping of layers. In this study, the laser cutting mechanism of FPCB was examined to solve problems related to surface debris and short-circuiting that can be caused by the photo-thermal effect. The laser cutting of PI and FCCL, which are base materials of FPCB, was carried out using a pico-second laser(355nm, 532nm) and nano-second UV laser with adjusting variables such as the average/peak power, scanning speed, cycles, gas and materials. Points which special attention should be paid are that a fast scanning speed, low repetition rate and high peak power are required for precision machining.

  • PDF