• Title/Summary/Keyword: Nano ceramic

Search Result 731, Processing Time 0.029 seconds

Synthesis and Characterization of CoAl2O4 Glazed Blue Ceramic Ink for Ink-Jet Printing (Ink-jet 프린팅용 CoAl2O4 고화도 나노 무기 잉크 제조 및 프린팅 특성평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Ink-jet printing technology has been widely attractive due to its facility for direct and fine printing on various substrates. Recent studies have focused on expanding the application of ink-jet printing technology from general consumer use and design companies to the prototype production of precision parts and parts manufacturing. The use of ink-jet printing technology in decorated tableware, tiles, and other ceramic products also has many advantages. The printing process is fast and can be adaptable to various kinds of objects because there is no direct contact point between the printer and the substrates to be printed. For application to ceramic product decoration, inks containing highly dispersed inorganic nano-pigments are required. Here we report the synthesis and characterization of blue $CoAl_2O_4$ nanopigment for ink-jet printing. Blue ceramic ink based on the obtained $CoAl_2O_4$ pigment was prepared by dissolving $CoAl_2O_4$ pigment in a mixed solution of ethylene glycol and ethanol with volume ratios of 7:3 and 8:2, respectively, to obtain the appropriate viscosity for ink-jet printing. The ink solution contained 15 wt% of $CoAl_2O_4$ pigment and Cetyltrimethyl ammonium bromide(CTAB) and Sodium dodecyl sulfate(SDS) as dispersive agents. The prepared blue ceramic ink was stably jetted and formed a sphere-shaped droplet from an ink-jet printer.

Preparation of Hollow Silica by Spray Drying of Nano Silica Particles and Its Heat Transfer Property (나노 실리카의 분무건조를 이용한 중공구 입자 제조와 실리카중공구의 열전달 특성)

  • Youn, Chan Ki;Lim, Hyung Mi;Cha, Sujin;Kim, Dae Sung;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.531-538
    • /
    • 2012
  • Hollow silica spheres were prepared by spray drying of precursor solution of colloidal silica. The precursor solution is composed of 10-20 nm colloidal silica dispersed in a water or ethanol-water mixture solvent with additives of tris hydroxymethyl aminomethane. The effect of pH and concentrations of the precursor and additives on the formation of hollow sphere particles was studied. The spray drying process parameters of the precursor feeding rate, inlet temperature, and gas flow rate are controlled to produce the hollow spherical silica. The mixed solvent of ethanol and water was preferred because it improved the hollowness of the spheres better than plain water did. It was possible to obtain hollow silica from high concentration of 14.3 wt% silica precursor with pH 3. The thermal conductivity and total solar reflectivity of the hollow silica sample was measured and compared with those values of other commercial insulating fillers of glass beads and $TiO_2$ for applications of insulating paint, in which the glass beads are representative of the low thermal conductive fillers and the $TiO_2$ is representative of infrared reflective fillers. The thermal conductivity of hollow silica was comparable to that of the glass beads and the total solar reflectivity was higher than that of $TiO_2$.

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

Diluted Synthesis of Manocrystalline CeO2 by Mechanical Milling (희석혼합체의 기계적 분쇄에 의한 나노 CeO2의 합성)

  • Lim, Geon-Ja;Kim, Tae-Eun;Lee, Jong-Ho;Lee, Hae-Weon;Rhee, Dong-Joo;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • The nanocrystalline $CeO_2$ was synthesized by mechanical milling and subsequent heat-treatment with the mixture of $Ce(OH)_4$ precursor and diluent, NaCl. Using deionized water, the diluent, NaCl, in the mixture has been easily dissolved out. Diffusion barrier was provided by the diluent during heat-treatment, which suppressed not only the coarsening of primary particle but also the agglormeration between the particles. Crystallite and aggregate size of $CeO_2$ depended on the concentration of diluent, temperature and time of heat-treatment; increased with the temperature and time increases. In case the mixture was heat-treated at high than $600^{\circ}C$, however, the crystallite size was saturated near 20 nm, which was supposed to be due to the densification of diluent.

Nano-level mirror finishing for ELID ground surfsce using magnetic assisted polishing (자기연마를 이용한 ELID 연삭면의 나노경면연마)

  • Lee Y.C.;Kwak T.S.;Anzai M.;Ohmori H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.629-632
    • /
    • 2005
  • ELID(ELectrolytic In-process Dressing) grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP(Magnetic Assisted Polishing) has been used as a polishing method due to its high polishing efficiency and to its resulting in a superior surface quality. This study describes an effective fabrication method combining ELID and MAP of nano-precision mirror grinding for glass-lens molding mould, such as WC-Co, which are extensively used in precision tooling material. And for the optics glass-ceramic named Zerodure, which is extensively used in precision optics components too. The experimental results show that the combined method is very effective in reducing the time required for final polishing. The best surface roughness of the polished glass-ceramic was within 1.7nm Ra in this study.

  • PDF

Facile Synthesis of Vertically Aligned CdTe-Si Nanostructures with High Density (수직배양된 고집적 CdTe-Si 나노구조체의 제조방법)

  • Im, Jinho;Hwang, Sung-hwan;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.185-191
    • /
    • 2017
  • Cadmium compounds with one dimension (1D) nanostructures have attracted attention for their excellent electrical and optical properties. In this study, vertically aligned CdTe-Si nanostructures with high density were synthesized by several simple chemical reactions. First, l D Te nanostructures were synthesized by silver assisted chemical Si wafer etching followed by a galvanic displacement reaction of the etched Si nanowires. Nanowire length was controlled from 1 to $25{\mu}m$ by adjusting etching time. The Si nanowire galvanic displacement reaction in $HTeO_2{^+}$ electrolyte created hybrid 1D Te-branched Si nanostructures. The sequential topochemical reaction resulted in $Ag_2Te-Si$ nanostructures, and the cation exchange reaction with the hybrid 1D Te-branched Si nanostructures resulted in CdTe-Si nanostructures. Wet chemical processes including metal assisted etching, galvanic displacement, topochemical and cation exchange reactions are proposed as simple routes to fabricate large scale, vertically aligned CdTe-Si hybrid nanostructures with high density.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Fabrication of Conductive Pastes for Induction Cookware with the Variation of the Contents of Silver Powder and Glass Frit (인덕션 조리용기용 도전성 Paste의 Silver 및 Glass Frit 함량 변화에 따른 미세구조 및 전기적 특성 고찰)

  • Gu, Hyun Ho;Kim, Bong Ho;Yoon, Young Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.690-695
    • /
    • 2016
  • Induction cooktop has a great attention due to its safety, quick heating and cleanness compared to gas oven. However, the materials for induction cookware is limited to steel or stainless-steel which has the magnetic property. Recently, it has been tried to apply various porcelain to induction cookware after printing the silver layer on the bottom of cookware plates and co-firing at high temperature. Glass frits are added in the silver paste to improve an adhesion force between porcelain materials containers and transferred silver layer. The hybrid silver pastes for induction cookware requires the proper electrical resistance and the thermal conductivity with base plates. After sintering process at $800^{\circ}C$, a part of melted glass migrated to the porcelain and the rest of the glass frit was exposed to the surface. It was confirmed that most of the glass frit formed an adhesion layer between the porcelain and transferred silver layer that enhances the adhesion force.