• Title/Summary/Keyword: Nano SOI

Search Result 67, Processing Time 0.025 seconds

Electrical Characterization of Nano SOI Wafer by Pseudo MOSFET (Pseudo MOSFET을 이용한 Nano SOI 웨이퍼의 전기적 특성분석)

  • Bae, Young-Ho;Kim, Byoung-Gil;Kwon, Kyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1075-1079
    • /
    • 2005
  • The Pseudo MOSFET measurements technique has been used for the electrical characterization of the nano SOI wafer. Silicon islands for the Pseudo MOSFET measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo MOSFET were not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device were dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100 nm SOI was obtained by thinning the silicon film of standard thick SOI wafer. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching Process dependency is greater in the thinner SOI wafer.

A Nano-structure Memory with SOI Edge Channel and A Nano Dot (SOI edge channel과 나노 점을 갖는 나노 구조의 기억소자)

  • 박근숙;한상연;신형철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.48-52
    • /
    • 1998
  • We fabricated the newly proposed nano structure memory with SOI edge channel and a nano dot. The width of the edge channel of this device, which uses the side wall as a channel and has a nano dot on this channel region, was determined by the thickness of the recessed top-silicon layer of SOI wafer. The size of side-wall nano dot was determined by the RIE etch and E-Beam lithography. The I$_{d}$-V$_{d}$, I$_{d}$-V$_{g}$ characteristics of the devices without nano dots and memory characteristics of the devices with nano dots were obtained, where the voltage scan was done between -20 V and 14 V and the threshold voltage shift was about 1 V.t 1 V.

  • PDF