• Title/Summary/Keyword: NaI(Tl) 검출기

Search Result 31, Processing Time 0.022 seconds

A Low-Dose High-Resolution SPECT System with CdTe for Small-Animal Imaging Applications: A GATE Simulation Study (GATE 시뮬레이션을 통한 고해상도 저선량용 소동물 영상화를 위한 CdTe 검출기 기반의 SPECT 기기 연구)

  • Park, Su-Jin;Yu, A Ram;Kim, Yeseul;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.162-170
    • /
    • 2013
  • Dedicated single-photon emission computed tomography (SPECT) systems based on pixelated semiconductors are being developed for studying small animal models of human disease. To clarify the possibility of using a SPECT system with CdTe for a high resolution low-dose small animal imaging, we compared the quality of reconstructed images from pixelated CdTe detector to those from a small SPECT system with NaI(Tl). The CdTe detector was $44.8{\times}44.8$ mm and the pixels were $0.35{\times}0.35{\times}5$ mm. The intrinsic resolution of the detector was 0.35 mm, which is equal to the pixel size. GATE simulations were performed to assess the image quality of both SPECT systems. The spatial resolutions and sensitivities for both systems were evaluated using a 10 MBq $^{99m}Tc$ point source. The quantitative comparison with different injected dose was performed using a voxelized MOBY phantom, and the absorbed doses for each organ were evaluated. The spatial resolution of the SPECT with NaI(Tl) was about 1.54 mm FWHM, while that of the SPECT with a CdTe detector was about 1.32 mm FWHM at 30 mm. The sensitivity of NaI(Tl) based SPECT was 83 cps/MBq, while that of the CdTe detector based SPECT was 116 cps/MBq at 30 mm. The image statistics were evaluated by calculating the CNR of the image from both systems. When the injected activity for the striatum in the mouse brain was 160 Bq/voxel, the CNR of CdTe based SPECT was 2.30 while that of NaI(Tl) based SPECT was 1.85. The CNR of SPECT with CdTe was overall higher than that of the NaI(Tl) based SPECT. In addition, the absorbed dose was higher from SPECT with CdTe than those from NaI(Tl) based SPECT to acquire the same quantitative values. Our simulation results indicated that the SPECT with CdTe detector showed overall high performance compared to the SPECT with NaI(Tl). Even though the validation study is needed, the SPECT system with CdTe detector appeared to be feasible for high resolution low-dose small animal imaging.

Determination of Spectrum-Exposure Rate Conversion Factor for a Portable High Purity Germanium Detector (휴대형 고순도 게르마늄검출기에 대한 스펙트럼-조사선량율 변환연산자의 결정)

  • Kwak, Sang-Soo;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.29-40
    • /
    • 1988
  • A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.

  • PDF

A Study on the Energy and Time Characteristics of $BaF_2$ Scintillation Detector ($BaF_2$ 검출기의 시간과 에너지 특성연구)

  • Ju, Gwan-Sik;Park, Il-Jin;Kim, Jong-Ho;Nam, Gi-Yong;Baek, Seung-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 1997
  • he scintillation detector having $BaF^2$ crystal with 3.6cm dia${\times}$2.0 cm thick was provided. The energy and timing characteristics were measured and compared with NaI(Tl) scintillation detectors, which widely used in unclear medicine. In order to measure the energy spectrum, the radioactive sources used were $^{22}Na,\;^{54}Mn,\;^{57}Co,\;^{137}Cs$ and the source to detector distance was 7cm. For the timing characteristic, NaI(Tl)(1" ${\times}$ 1")-$BaF^2$ and NaI(Tl)(3" ${\times}$ 3")-$BaF^2$ timing coincidence systems were prepared and the used source was $^{22}Na$ emitting 511keV annihilation photons. For the 511keV gamma-ray emitted from $^{22}Na$, It was revealed that the timing response of the $BaF^2$ detector was faster than NaI(Tl)(1" ${\times}$ 1") and NaI(Tl)(3" ${\times}$ 3") detector used in this experimental investigation. The energy characteristics of the $BaF^2$ detector had a good values for about 500keV energy range.

  • PDF

Determinations of the Exposure Rate Using a NaI(Tl) Detector of the Environmental Radiation Monitor (환경방사선감시기의 NaI(Tl) 검출기를 이용한 조사선량률 결정방법)

  • Ji, Young-Yong;Lee, Wanno;Choi, Sang-Do;Chung, Kun Ho;Kang, Mun Ja;Choi, Geun-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.245-251
    • /
    • 2013
  • The energy band and the G-factor method were compared to determine the exposure rate from the measured spectrum using a NaI(Tl) scintillation detector. First, G-factors of a 3"${\Phi}X3$" NaI(Tl) detector mounted to a EFRD 3300, which means the environmental radiation monitor, in Korea Atomic Energy Research Institute (KAERI) were calculated for several directions of incident photons through the MCNP modeling, and the optimum G-factor applicable to that monitor was then determined by comparing the results both the energy band method and the G-factor method. The results for these spectrometric determinations were also compared with the dose rate from a HPIC radiation monitor around a EFRD 3300. The measured value at the EFRD 3300 based on a 3"${\Phi}X3$" NaI(Tl) detector was $7.7{\mu}R/h$ and its difference was shown about $3{\mu}R/h$, when compared with the results from a HPIC radiation moditor. Since a HPIC is known to be able to measure cosmic rays with the relatively high energy, the difference between them was caused by cosmic rays which were not detected in a 3"${\Phi}X3$" NaI(Tl) detector.

MDA Assessment of NaI(Tl), LaBr3(Ce), and CeBr3 Detectors for Freshly Deposited Radionuclides on the Soil (지표면 침적 방사성핵종에 대한 NaI(Tl), LaBr3(Ce) 및 CeBr3 검출기의 MDA 비교 평가)

  • Lee, Jun-Ho;Kim, Bong-Gi;Lee, Dong Myung;Byun, Jong-In
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • The detection performances of the NaI(Tl), $LaBr_3$(Ce) and $CeBr_3$ scintillation detectors, which can be used to rapidly evaluate the major artificial radionuclides deposited on the soil surface in a nuclear accident or radiological emergency, were compared. Detection performance was assessed by calculating the minimum detectable activity (MDA). The detection efficiency of each detector for artificial radionuclides was semi-empirically determined using mathematical modelling and point-like sources having certified radioactivity. The background gamma-ray energy spectrum for MDA evaluation was obtained from relatively wide and flat grassland, and the MDA values of each detector for the major artificial radionuclides that could be released in nuclear accidents were calculated. As a result, the relative MDA values of each detector regarding surface deposition distribution at normal environmental radiation level were evaluated as high in the order of the NaI(Tl), $LaBr_3$(Ce), and $CeBr_3$ detectors. These results were compared based on each detector's intrinsic and measurement environment background, detection efficiency, and energy resolution for the gamma-ray energy region of the radionuclide of interest.

Automatic Determination of the Energy Pulse-height Relationship in NaI(TI) Spectra (NaI(T1) 검출기 스펙트럼의 에너지-채널 관계 자동결정)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.143-151
    • /
    • 1997
  • As the pulse heights from a NaI(Tl) detector vary with the temperature of the measuring environment a significant change in temperature may affect the energy calibration of the spectrometer. The auto-adjustment of the channel corresponding to a pulse heights can be achieved by introducing an external reference source to compensate the temperature dependency of pulse heights, but unfavorable increases of the Compton continuum are caused due to the external source. In this study, the total absorption peaks dominant in the typical environmental gamma spectrum-239 keV from $^{212}Pb$, 351 keV from $^{214}Pb$, 1460 keV from $^{40}K$ and 2614 keV from $^{208}Tl$ for examples - were used as reference in the correction of energy calibration. With these peaks, the program to calibrate the energy of the s spectrum was developed using Microsoft Visual Basic language. The program developed here was applied to the environmental spectra measured at intervals of 30 minutes in the temperature range of from $-20^{\circ}C$ to $10^{\circ}C$ to demonstrate the validity and applicability. As a result of the test, the correction scheme appeared to be effective in the temperature changes encountered in the usual environment.

  • PDF

Design of Wide-Range radiation measurement system using GM Tube and NaI(TI) Detector (GM Tube 및 NaI(TI) 검출기를 사용한 Wide-Range 방사선 측정 시스템의 설계)

  • Ra, Seung-Tak;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.146-149
    • /
    • 2017
  • In this paper, we propose a wide-range radiation measurement system using GM Tube and NaI(TI) detector. The proposed system is designed as a small module optimized to control and count the detector signal of NaI(Tl) Detector and GM Tube. The radiation dose is measured in a wide-range 0.1uSv/h to 10mSv/h in conjunction with two detectors, and two detectors operate simultaneously at 10uSv/h to 100uSv/h, where the measurement interval overlaps. The radiation dose was selected using a wide-range radiation measurement algorithm that controls the on/off function of the detector in the appropriate interval for the overlapped radiation measurable interval. In order to evaluate the performance of the proposed system, it has been confirmed that the measurement uncertainty of each section is measured as ${\pm}7.5%$ and it operates normally under ${\pm}15%$ of the international standard.

Performance Evaluation of Component Detectors of Double-scattering Compton Camera (이중 산란형 컴프턴 카메라 구성 검출기 성능 평가)

  • Seo, Hee;Park, Jin-Hyung;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik;Lee, Jae-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • Prototype double-scattering Compton camera, which consists of three gamma-ray detectors, that is, two double-sided silicon strip detectors (DSSDs) as scatterer detectors and a NaI(Tl) scintillation detector as an absorber detector, could provide high imaging resolution with a compact system. In the present study, the energy resolution and the timing resolution of component detectors were measured, and the parameters affecting the energy resolution of the DSSD were examined in terms of equivalent noise charge (ENC). The energy resolutions of the DSSD-1 and DSSD-2 were, in average, $25.2keV{\pm}0.8keV$ FWHM and $31.8keV{\pm}4.6keV$ FWHM at the 59.5 keV peak of $^{241}Am$, respectively. The timing resolutions of the DSSD and NaI(Tl) scintillation detector were 57.25 ns FWHM and 7.98 ns FWHM, respectively. In addition, the Compton image was obtained for a point-like $^{137}Cs$ gamma source with double-scattering Compton camera. From the present experiment, the imaging resolution of 8.4 mm FWHM (angular resolution of $8.1^{\circ}$ FWHM), and the imaging sensitivity of $1.5{\times}10^{-7}$ (intrinsic efficiency of $1.9{\times}10^{-6}$) were obtained.

A Study on Efficiency Error in Distance Inverse Square Law using Cylinder NaI(Tl) Scintillation Detector (원통형 NaI(Tl) 신틸레이션 검출기를 이용한 거리의 역자승 법칙에서 효율 오류에 대한 연구)

  • Lee, Samyol;Yoon, Jungran;Ro, TaeIk
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.333-338
    • /
    • 2013
  • Generally, it's known fact that intensity of radioactivity satisfies inverse-square law. However, the law was dissatisfied with practical experiment because of limited shape of scintillation detector. Especially, in the case of near distance between the surface of detector and the radioactive source, the difference grows larger. In the present study, reason of this difference was confirmed by experiment with $2^{{\prime}{\prime}}{\times}2^{{\prime}{\prime}}{\phi}$ NaI(Tl) scintillation detector and $^{60}Co$(1.174 MeV, 1.333 MeV)and $^{137}Cs$(0.662 MeV) gamma ray sources. From the experiment, the correction coefficient was obtained with gamma ray detection efficiency and geometrical volume. In the result of the present study, the efficiency difference of the detector was corrected with the coefficient. In the present result, we obtained that the inverse-square law experiment have to consider the efficiency and geometrical value of the detector.