DOI QR코드

DOI QR Code

Determinations of the Exposure Rate Using a NaI(Tl) Detector of the Environmental Radiation Monitor

환경방사선감시기의 NaI(Tl) 검출기를 이용한 조사선량률 결정방법

  • Received : 2013.05.02
  • Accepted : 2013.09.05
  • Published : 2013.09.30

Abstract

The energy band and the G-factor method were compared to determine the exposure rate from the measured spectrum using a NaI(Tl) scintillation detector. First, G-factors of a 3"${\Phi}X3$" NaI(Tl) detector mounted to a EFRD 3300, which means the environmental radiation monitor, in Korea Atomic Energy Research Institute (KAERI) were calculated for several directions of incident photons through the MCNP modeling, and the optimum G-factor applicable to that monitor was then determined by comparing the results both the energy band method and the G-factor method. The results for these spectrometric determinations were also compared with the dose rate from a HPIC radiation monitor around a EFRD 3300. The measured value at the EFRD 3300 based on a 3"${\Phi}X3$" NaI(Tl) detector was $7.7{\mu}R/h$ and its difference was shown about $3{\mu}R/h$, when compared with the results from a HPIC radiation moditor. Since a HPIC is known to be able to measure cosmic rays with the relatively high energy, the difference between them was caused by cosmic rays which were not detected in a 3"${\Phi}X3$" NaI(Tl) detector.

NaI(Tl) 섬광검출기로 측정한 에너지 스펙트럼으로부터 공간 감마 선량률을 계산하기 위하여 에너지밴드 방법과 G-factor 방법의 결과를 비교 검토하였다. 먼저 한국원자력연구원 내 운영 중인 환경방사선감시기 EFRD 3300에 장착된 3"${\Phi}X3$" NaI(Tl) 검출기의 G-factor를 MCNP 모델링을 통하여 입사 방사선의 방향에 따라 각각 구하였으며, 이로부터 계산된 선량률과 에너지밴드 방법으로 계산된 결과의 차이를 비교 검토함으로써 EFRD 3300에 적용 가능한 최적의 G-factor 값을 유도하였다. 그리고 EFRD 3300 방사선감시기가 운영되고 있는 지역 주변에 위치한 HPIC 방사선감시기의 선량률과 비교 검토를 수행하였으며, 3"${\Phi}X3$" NaI(Tl) 검출기 기반의 EFRD 3300에서 $7.7{\mu}R/h$의 측정값을 얻어 약 $3{\mu}R/h$ 정도의 차이를 보였다. 일반적으로 HPIC 방사선감시기는 고에너지 우주방사선량도 측정할 수 있는 것으로 알려져 있으므로, 이 차이는 3"${\Phi}X3$" NaI 계측기로 측정되지 못하는 고에너지 영역의 우주방사선에 의한 영향으로 평가할 수 있었다.

Keywords

References

  1. H.L. Beck, W.J. Condon and W.M. Lowder, "Spectrometric techniques for measuring environmental gamma radiation", HASL-150 (1964).
  2. H.L. Beck, J. DeCampo and C. Gogolak., "In situ Ge(Li) and NaI(Tl) gamma-ray spectroscopy", HASL-258 (1972).
  3. NCRP, "Environmental radiation measurements", NCRP report no. 50, pp. 84-100 (1976).
  4. M.S. Lee, "Determination of the exposure conversion coefficient for 3"${\times}$3" NaI spectrum", J. Korean Asso. Radiat. Prot., 26(2), pp. 73-78 (2001).
  5. J.S. Jun, C.Y. YI, H.S. Chai and H. Cho, "Calculation of spectrum to dose conversion factors for a NaI(Tl) scintillation detector using the response matrix", J. of the Korean Physical Society, 28(6), pp. 716-726 (1995).
  6. G. Cho, H.K. Kim, H. Woo, G. Oh and D.K. Ha, "Electronic dose conversion technique using a NaI(Tl) detector for assessment of exposure dose rate from environmental radiation", IEEE transactions on nuclear science, 45(3), pp. 981-985 (1998). https://doi.org/10.1109/23.682692
  7. Y.Y. Ji, D.S. Hong, T.K. Kim, K.K. Kwak and W.S. Ryu, "Application of the dose conversion factor for a NaI(Tl) detector to the radwaste drum assay", Radiation Measurement, vol. 46, pp. 503-509 (2011). https://doi.org/10.1016/j.radmeas.2011.03.021
  8. N.H. Seong, "Adaptive algorithm for calculation of dose conversion coeffieicient in 3"$\phi{\times}$3" NaI(Tl) scintillator", ENG06A-EHC-2006-123, Satrec Initiative Inc. (2006).
  9. K.D. Ianakiev, B.S. Alexandrov, P.B. Littlewood and M.C. Browne, "Temperature behavior of NaI(Tl) scintillation detectors", Nucl. Instrum. Meth., A607, pp. 432-438 (2009). https://doi.org/10.1016/j.nima.2009.02.019
  10. General Electric, "RSS-131-ER/RSS-131 user's manual", RSS-131-OM, N (2008).

Cited by

  1. A New Approach for the Determination of Dose Rate and Radioactivity for Detected Gamma Nuclides Using an Environmental Radiation Monitor Based on an NaI(Tl) Detector vol.113, pp.4, 2017, https://doi.org/10.1097/HP.0000000000000706