DOI QR코드

DOI QR Code

A Low-Dose High-Resolution SPECT System with CdTe for Small-Animal Imaging Applications: A GATE Simulation Study

GATE 시뮬레이션을 통한 고해상도 저선량용 소동물 영상화를 위한 CdTe 검출기 기반의 SPECT 기기 연구

  • Park, Su-Jin (Department of Radiological Science, College of Health Science, Research Institute of Health Science, Yonsei University) ;
  • Yu, A Ram (Department of Radiological Science, College of Health Science, Research Institute of Health Science, Yonsei University) ;
  • Kim, Yeseul (Department of Radiological Science, College of Health Science, Research Institute of Health Science, Yonsei University) ;
  • Lee, Young-Jin (Department of Radiological Science, College of Health Science, Research Institute of Health Science, Yonsei University) ;
  • Kim, Hee-Joung (Department of Radiological Science, College of Health Science, Research Institute of Health Science, Yonsei University)
  • 박수진 (연세대학교 보건과학대학 방사선학과, 연세대학교 보건과학연구소) ;
  • 유아람 (연세대학교 보건과학대학 방사선학과, 연세대학교 보건과학연구소) ;
  • 김예슬 (연세대학교 보건과학대학 방사선학과, 연세대학교 보건과학연구소) ;
  • 이영진 (연세대학교 보건과학대학 방사선학과, 연세대학교 보건과학연구소) ;
  • 김희중 (연세대학교 보건과학대학 방사선학과, 연세대학교 보건과학연구소)
  • Received : 2013.07.29
  • Accepted : 2013.09.07
  • Published : 2013.09.30

Abstract

Dedicated single-photon emission computed tomography (SPECT) systems based on pixelated semiconductors are being developed for studying small animal models of human disease. To clarify the possibility of using a SPECT system with CdTe for a high resolution low-dose small animal imaging, we compared the quality of reconstructed images from pixelated CdTe detector to those from a small SPECT system with NaI(Tl). The CdTe detector was $44.8{\times}44.8$ mm and the pixels were $0.35{\times}0.35{\times}5$ mm. The intrinsic resolution of the detector was 0.35 mm, which is equal to the pixel size. GATE simulations were performed to assess the image quality of both SPECT systems. The spatial resolutions and sensitivities for both systems were evaluated using a 10 MBq $^{99m}Tc$ point source. The quantitative comparison with different injected dose was performed using a voxelized MOBY phantom, and the absorbed doses for each organ were evaluated. The spatial resolution of the SPECT with NaI(Tl) was about 1.54 mm FWHM, while that of the SPECT with a CdTe detector was about 1.32 mm FWHM at 30 mm. The sensitivity of NaI(Tl) based SPECT was 83 cps/MBq, while that of the CdTe detector based SPECT was 116 cps/MBq at 30 mm. The image statistics were evaluated by calculating the CNR of the image from both systems. When the injected activity for the striatum in the mouse brain was 160 Bq/voxel, the CNR of CdTe based SPECT was 2.30 while that of NaI(Tl) based SPECT was 1.85. The CNR of SPECT with CdTe was overall higher than that of the NaI(Tl) based SPECT. In addition, the absorbed dose was higher from SPECT with CdTe than those from NaI(Tl) based SPECT to acquire the same quantitative values. Our simulation results indicated that the SPECT with CdTe detector showed overall high performance compared to the SPECT with NaI(Tl). Even though the validation study is needed, the SPECT system with CdTe detector appeared to be feasible for high resolution low-dose small animal imaging.

인간의 질병연구를 위한 소동물용 픽셀화 반도체 검출기 기반의 단일광자단층촬영(SPECT, single photon emission computed tomography)시스템 개발이 이루어지고 있다. 본 연구에서는 CdTe검출기 기반의 SPECT시스템의 고해상도 및 저선량 소동물 영상화 가능성을 알아보고자 NaI(Tl) 섬광결정 검출기로 구축된 SPECT 시스템과 비교 평가하였다. CdTe 검출기는 $44.8{\times}44.8$ mm의 크기이며 $0.35{\times}0.35{\times}5$ mm크기의 픽셀로 구성되어 있다. 검출기의 내인성 분해능은 0.35 mm 이며 이는 픽셀 크기와 동일하다. GATE 시뮬레이션 방법을 통하여 두 시스템간의 성능 평가를 수행하고 비교 분석하였다. 시스템의 공간 분해능과 민감도는 10 MBq의 $^{99m}Tc$ 점 선원을 사용하여 평가하였다. 복셀화된 MOBY (mouse whole-body) 팬텀을 사용하여 정량적 평가 및 흡수선량을 계산하였다. 점선원과 조준기 사이의 거리가 30 mm 일 때, NaI(Tl) 섬광결정 검출기 기반의 SPECT의 분해능은 1.54 mm, 민감도는 83 cps/MBq였으며, CdTe검출기 기반의 SPECT시스템의 분해능은 1.32 mm, 민감도는 116 cps/MBq로 더욱 향상된 공간 분해능과 민감도를 나타내었다. 두 시스템의 정량적 통계 분석은 CNR 계산을 통해 이루어졌으며, 주입 선량을 다양하게 설정하여 두 시스템에서의 CNR을 획득하였다. Mouse brain내 striatum의 주입선량이 160 Bq/voxel일 경우, CdTe검출기 기반의 SPECT에서 획득한 CNR은 2.30이었으며 섬광결정 검출기 SPECT에서 획득한 CNR은 1.85로 CdTe검출기 기반의 SPECT에서 더욱 큰 CNR을 지니고 있었다. 또한, CdTe기반의 SPECT를 사용할 경우 NaI(Tl) 섬광결정 검출기 기반의 SPECT 시스템을 사용하는 것보다 동일한 정량적 수치획득을 위한 소동물의 피폭선량을 감소시켜줄 수 있었다. 본 연구에서는 반도체 검출기 CdTe기반의 SPECT은 NaI(Tl) 섬광결정 검출기 SPECT 시스템보다 공간 분해능과 민감도 측면에서 높은 성능을 보였음을 증명하였다. 실제 시스템과의 검증 등의 추가 연구가 필요하지만, 본 연구 결과는 향후 피폭 선량을 줄이는 동시에 영상의 질을 높일 수 있는 소동물용 SPECT 시스템 구축에 응용될 수 있을 것이다.

Keywords

References

  1. Meikle SR, Kench P, Kassiou M, Banati RB: Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50(22):R45-R61 (2005) https://doi.org/10.1088/0031-9155/50/22/R01
  2. Todd EP, Lasrs RF: SPECT detectors: the Anger Camera and beyond. Phys Med Biol 56(17):R145-R182 (2011) https://doi.org/10.1088/0031-9155/56/17/R01
  3. Kim H, Furenlid LR, Crawford MJ, et al: SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 33(2):465-474 (2006) https://doi.org/10.1118/1.2164070
  4. Park S, Lee C, Cho H, Kim H: Ultra-high-resolution SPECT with CdTe for small-animal imaging applications: a monte carlo simulation study using a voxelized phantom. JKPS 60(7):1145-1149 (2012) https://doi.org/10.3938/jkps.60.1145
  5. Kubo N, Songji A, Fujiki Y, et al: Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging. Ann Nucl Med 19(7):633-639 (2005) https://doi.org/10.1007/BF02985059
  6. Ogawa K, Muraishi M: Simulation Study on an ultra-high resolution SPECT with CdTe detectors. IEEE Nuclear Science Symposium Conference Record. 2006, San Diego, M10-50
  7. Ogawa K, Ohmura N, Iida H, Kubo A: Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector. Ann Nucl Med 23(8):763-770 (2009) https://doi.org/10.1007/s12149-009-0293-x
  8. Richard T, Arion FC: Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds. Med Phys 34(3):1026-1036 (2007) https://doi.org/10.1118/1.2558115
  9. Papadimitroulas P, Nikiforidis GC, Kagadis GC: A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes. Med Phys 39(8):5238-5247 (2012) https://doi.org/10.1118/1.4737096
  10. Stolin AV, Williams MB, Kundu BK, et al: Characterization of imaging gamma detectors for use in small animal SPECT. Proc. IEEE Nuclear Science Symposium Conference Record. 2003, Portland, pp. 2085
  11. Jan S, Benoit D, Becheba E, Carlier T, et al: GATE V6: a major enhancement of the GATE simulation platform enabling modeling of CT and radiotherapy. Phys Med Biol 56(4):881-901 (2011) https://doi.org/10.1088/0031-9155/56/4/001
  12. Jan S, Santin G, Strul D, et al: GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49(19):4543-4561 (2004) https://doi.org/10.1088/0031-9155/49/19/007
  13. Assie K, Gardin I, Vera P, Buvat I: Validation of the Monte Carlo simulator GATE for indium-111 imaging. Phys Med Biol 50(13):3113-3125 (2005) https://doi.org/10.1088/0031-9155/50/13/010
  14. Staelens S, Strul D, Santin G, et al: Monte Carlo simulations of a scintillation camera using GATE: validation and application modeling. Phys Med Biol 48(18):3021-3042 (2003) https://doi.org/10.1088/0031-9155/48/18/305
  15. Zaidi H: Quantitative Analysis in Nuclear Medicine Imaging. Switzerland, Springer, Geneva (2006), pp. 141-165
  16. Paul W, Tsui BMW: MCAT to XCAT: the evolution of 4-D computerized phantoms for imaging research. Proceedings of the IEEE. 2009, Orland, pp. 1954-1968
  17. Branco S, Jan S, Almeida P: Respiratory motion modeling in small animal PET using GATE. IEEE Nuclear Science Symposium Conference Record. 2008, Dresden, M10-234
  18. Paul W, Tsui BMW, Frey FC, Johnson JGA, Berr SS: Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imag Biol 6(3):149-159 (2004) https://doi.org/10.1016/j.mibio.2004.03.002
  19. Cao Z, Bal G, Accorsi R, Acton PD: Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging-a simulation study. Phy Med Biol 50(19):4609-4624 (2005) https://doi.org/10.1088/0031-9155/50/19/013