• 제목/요약/키워드: NURBS-based isogeometric analysis

검색결과 29건 처리시간 0.021초

THE ISOGEOMETRIC VARIATIONAL MULTISCALE METHOD FOR LAMINAR INCOMPRESSIBLE FLOW

  • Moulage, Yourself Gaffers;Ahn, Hyung-Taek
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권1호
    • /
    • pp.65-84
    • /
    • 2012
  • We present an application of the variational multiscale methodology to the computation of concentric annular pipe flow. Isogeometric analysis is utilized for higher order approximation of the solution using Non-Uniform Rational B-Splines (NURBS) functions. The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through the curved channel.

RM 등기하 판요소를 이용한 적층판의 자유진동 및 선형좌굴 해석 (Vibration and Buckling Analysis of Laminated Composite Plates using RM Isogeometric General Plate Element)

  • 김하룡;이상진
    • 한국공간구조학회논문집
    • /
    • 제14권2호
    • /
    • pp.59-68
    • /
    • 2014
  • A study on the vibration and buckling analyses of laminated composite plates is described in this paper. In order to carry out the analyses of laminated composite plates, a NURBS-based isogeometric general plate element based on Reissner-Mindlin (RM) theory is developed. The non-uniform rational B-spline (NURBS) is used to represent the geometry of plate and the unknown displacement field and therefore, all terms required in this element formulation are consistently derived by using NURBS basis function. Numerical examples are conducted to investigate the accuracy and reliability of the present plate element. From numerical results, the present plate element can produce the isogeometric solutions with sufficient accuracy. Finally, the present isogeometric solutions are provided as future reference solutions.

Combination of isogeometric analysis and extended finite element in linear crack analysis

  • Shojaee, S.;Ghelichi, M.;Izadpanah, E.
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.125-150
    • /
    • 2013
  • This paper intends to present an application of isogeometric analysis in crack problems. An isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM enrichment functions. The proposed method which is represented by the combination of the two above-mentioned methods, first by using NURBS functions models the geometry exactly and then by defining level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the proposed method during calculation of crack parameters.

2차원 멀티패치 모델의 아이소-지오메트릭 해석 (Isogeometric Analysis for Two-dimensional Multipatch Model)

  • 김민근;구본용
    • 한국전산구조공학회논문집
    • /
    • 제30권6호
    • /
    • pp.515-522
    • /
    • 2017
  • 본 논문에서는 2개 이상의 기하형상이 순응 또는 비순응 경계면에서 접합된 멀티패치 문제에 대한 아이소-지오메트릭 해석에 대해서 연구하였다. 패치 경계면에서 응력의 연속성을 표현하는 방법으로 Nitsche 방법론과 마스터-슬레이브 방법에 기반한 방법론에 대해서 지배방정식을 유도하고 아이소-지오메트릭 이산화를 수행하였다. 멀티패치 문제에 대해서 두 방법론의 차이점을 간단하게 비교하였으며, 후처리 과정에서 사용되는 NURBS 곡면 기반의 응력 복원법에 대해서 기술하였다. 수치예제에서 비순응 경계면을 가지는 멀티패치 빔 문제를 통해 Nitshce 방법론을 검증하였으며, 응력집중을 가지는 문제에서 소개된 두 방법론이 유사한 결과를 보이는 것을 확인하였다. 소개된 NURBS 곡면 기반의 응력 복원법을 후처리에서 도입할 경우 멀티패치 문제의 경계면에서 개선된 연속적인 응력을 보임을 알 수 있다.

NURBS-based isogeometric analysis for thin plate problems

  • Shojaee, S.;Valizadeh, N.
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.617-632
    • /
    • 2012
  • An isogeometric approach is presented for static analysis of thin plate problems of various geometries. Non-Uniform Rational B-Splines (NURBS) basis function is applied for approximation of the thin plate deflection, as for description of the geometry. The governing equation based on Kirchhoff plate theory, is discretized using the standard Galerkin method. The essential boundary conditions are enforced by the Lagrange multiplier method. Several typical examples of thin plate and thin plate on elastic foundation are solved and compared with the theoretical solutions and other numerical methods. The numerical results show the robustness and efficiency of the proposed approach.

Free Vibrations of Plates and Shells with an Isogeometric RM Shell Element

  • LEE, Sang Jin
    • Architectural research
    • /
    • 제18권2호
    • /
    • pp.65-74
    • /
    • 2016
  • Free vibration analysis of plates and shells is carried out by using isogeometric approach. For this purpose, an isogeometric shell element based on Reissner-Mindlin (RM) shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and it is also used to derive all terms required in the isogeometric element formulation. New anchor positions are proposed to calculate the shell normal vector. Gauss integration rule is used for the formation of stiffness and mass matrices. The proposed shell element is then used to examine vibrational behaviours of plate and shell structures. From numerical results, it is found to be that reliable natural frequencies and associated mode shapes can be predicted by the present isogeometric RM shell element.

등기하 해석법을 이용한 설계 민감도 해석 (Shape Design Sensitivity Analysis Using Isogeometric Approach)

  • 하승현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.339-345
    • /
    • 2007
  • 본 논문에서는 등기하 해석법을 이용하여 평면 탄성문제의 변분식을 유도하였다. 등기하 해석법은 새로이 부각되고 있는 해석법으로서 기저 함수가 NURBS(Non-Uniform Rational B-Splines) 로부터 직접 생성되므로 해 공간은 CAD 모델을 구성하는 함수로써 표현된다. 또한 CAD 모델의 B-Spline 기저 함수를 직접 사용하므로 기하학적으로 엄밀한 형상을 표현할 수 있고 요소망의 재구성 없이 해석모델을 정밀화(Refinement)할 수 있는 강점이 있다. 본 논문에서는 이를 확장하여 연속체 기반의 애드조인트 설계 민감도 해석법을 사용하는 등기하 설계민감도 해석법을 유도하였다. 기존의 유한요소 기반형상 최적설계는 형상의 매개화에 어려움을 겪었으나 등기하 기반 최적설계에서는 기하학적 정보가 이미 B-spline 기저함수와 조정점에 포함되어 있으므로 이러한 어려움을 피할 수 있는 잠재력을 가지고 있다. 몇몇 수치 예제를 통해서 등기하 해석법을 사용한 설계 민감도 해석을 수행하였으며 유한차분 민감도와 비교하여 정확성을 확인하였다.

Free Vibrations of Thin Shells with Isogeometric Approach

  • Lee, Sang Jin
    • Architectural research
    • /
    • 제16권2호
    • /
    • pp.67-74
    • /
    • 2014
  • Free vibration analysis of thin shells is carried out by using isogeometric approach. For this purpose, a thin shell element based on Kirchhoff-Love shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and also used to derive all terms required in the isogeometric element formulation. Gauss integration rule is used for stiffness and mass matrices. The present shell element is then applied to examine vibrational behaviours of thin plate and shell structures. From numerical results, it is found be that reliable natural frequencies and associated mode shapes of thin shell structures can be predicted by the present isogeometric shell element.

CAD 형상을 활용한 설계 민감도 해석 (Shape Design Sensitivity Analysis using Isogeometric Approach)

  • 하승현;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams

  • Liu, Hongliang;Zhu, Xuefeng;Yang, Dixiong
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.503-526
    • /
    • 2016
  • In-plane and out-of-plane free vibration analysis of Timoshenko curved beams is addressed based on the isogeometric method, and an effective scheme to avoid numerical locking in both of the two patterns is proposed in this paper. The isogeometric computational model takes into account the effects of shear deformation, rotary inertia and axis extensibility of curved beams, and is applicable for uniform circular beams, and more complicated variable curvature and cross-section beams as illustrated by numerical examples. Meanwhile, it is shown that, the $C^{p-1}$-continuous NURBS elements remarkably have higher accuracy than the finite elements with the same number of degrees of freedom. Nevertheless, for in-plane or out-of-plane vibration analysis of Timoshenko curved beams, the NURBS-based isogeometric method also exhibits locking effect to some extent. To eliminate numerical locking, the selective reduced one-point integration and $\bar{B}$ projection element based on stiffness ratio is devised to achieve locking free analysis for in-plane and out-of-plane models, respectively. The suggested integral schemes for moderately slender models obtain accurate results in both dominated and non-dominated regions of locking effect. Moreover, this strategy is effective for beam structures with different slenderness. Finally, the influence factors of structural parameters of curved beams on their natural frequency are scrutinized.