DOI QR코드

DOI QR Code

Free Vibrations of Plates and Shells with an Isogeometric RM Shell Element

  • LEE, Sang Jin (ADOPT Research Group, Department of Architectural Engineering, Gyeongsang National University)
  • Received : 2015.12.28
  • Accepted : 2016.03.19
  • Published : 2016.06.30

Abstract

Free vibration analysis of plates and shells is carried out by using isogeometric approach. For this purpose, an isogeometric shell element based on Reissner-Mindlin (RM) shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and it is also used to derive all terms required in the isogeometric element formulation. New anchor positions are proposed to calculate the shell normal vector. Gauss integration rule is used for the formation of stiffness and mass matrices. The proposed shell element is then used to examine vibrational behaviours of plate and shell structures. From numerical results, it is found to be that reliable natural frequencies and associated mode shapes can be predicted by the present isogeometric RM shell element.

Keywords

References

  1. BAQUS manual, Theory and Users Manuals. Hibbit, Karlson and Sorensen, Inc., Version 5.7.
  2. Cottrell, J.A., Bazilevs, Y. and Hughes, T.J.R. (2009). Isogeometric Analysis: Towards Integration of CAD and FEA. Wiley.
  3. De Boor, C. (1978) A Practical Guide to Splines. Springer.
  4. Flugge, W. (1934) Statik und Dynamik der Schalen. Springer-Verlag, Berlin, Germany.
  5. Huang, H.C. and Hinton, E. (1986) A new nine node degenerated shell element with enhanced membrane and shear interpolation. Int. J. Num. Meth. Engng., 22, pp.73-92. https://doi.org/10.1002/nme.1620220107
  6. Hughes, T.J.R. (1987) The Finite Element Method- Linear Static and Dynamic Finite Element Analysis. New Jersey: Prentice-Hall.
  7. Hughes, T.J.R., Cottrell, J. A. and Bazilevs, Y. (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng., 194(39-41), pp.4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  8. Hughes, T.J.R. and Evans J.A. (2010). Isogeometric analysis. ICES Report 10-18, The Institute of Computational Engineering and Science, University of Texas Austin.
  9. Kanok-nukulchai, W. (1979) A simple and efficient finite element for general shell element. Int. J. Num. Meth. Engng. 14, pp.179-200. https://doi.org/10.1002/nme.1620140204
  10. Lee, J.K., Leissa, A.W. and Wang, A.J. (1981) Vibrations of cantilevered shallow cylindrical shells of rectangular planform. J. Sound and Vibration, 78, pp.311-328. https://doi.org/10.1016/S0022-460X(81)80142-3
  11. Lee, S.J. and Kim, H.R. (2012) Vibration and buckling of thick plates using isogeometric approach. Architectural Research, 15, pp. 35-42.
  12. Lee, S.J. and Han, S.E. (2001) Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element. Journal of Sound and Vibration, 241, pp.605-633. https://doi.org/10.1006/jsvi.2000.3313
  13. Lee, S.J. and Park, K.S. (2013) Vibrations of Timoshenko beams with isogeometric approach. Applied Mathematical Modelling. 37(22), pp.9174-9190. https://doi.org/10.1016/j.apm.2013.04.034
  14. Leissa, A.W. (1969) Vibrations of plates. NASA SP-160, Washington D.C.
  15. Leissa, A.W. (1973) Vibrations of shells. NASA SP-288, Washington D.C.
  16. Liew, K.M. (1992) Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates. J. Sound and Vibration, 154, pp.261-269. https://doi.org/10.1016/0022-460X(92)90580-Q
  17. Liew, K.M. (1995) Research on thick plate vibration: a literature survey. J. Sound and Vibration, 180, pp.163-176. https://doi.org/10.1006/jsvi.1995.0072
  18. Lim, C.W. and Liew, K.M. (1994) A ph-z Ritz formulation for flexural vibration of shallow cylindrical shell of rectangular planform. J. Sound and Vibration, 173, pp.343-375. https://doi.org/10.1006/jsvi.1994.1235
  19. Love, A.E.H. (1888) The small free vibrations and deformation of a thin elastic shell, Philosophical transactions of royal society of London A, 179, pp.491-549. https://doi.org/10.1098/rsta.1888.0016
  20. Qatu, M.S. (1992) Review of shallow shell vibration research, Shock Vibration Digest, 24, pp.3-15.
  21. Rayleigh, J.W.S. (1894), Theory of sound. MacMillan Inc., London, England
  22. Piegl, Les and Tiller, Wayne (1997) The NURBS Book, Springer