• Title/Summary/Keyword: NO gas sensor

Search Result 229, Processing Time 0.026 seconds

The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment (열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-526
    • /
    • 2018
  • In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

The Analysis of NOx Gas Detection Characteristics for the Gas Sensor Using the MWCNT/ZnO Composites Film (MWCNT/ZnO 복합체 필름을 이용한 가스센서의 NOx가스 검출 특성 분석)

  • Kim, Hyun-Soo;Lee, Won-Jae;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.312-316
    • /
    • 2016
  • In this study, we fabricated $NO_x$ gas sensor by using multi-walled carbon nanotubes(MWCNT)/zinc oxide(ZnO) composite film. Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. And zinc oxide (ZnO) is a wide band gap and large exciton binding energy semiconductor. In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_x$ gas for different values of the $NO_x$ gas concentrations. The gas sensor that absorbed$NO_x$ gas molecules showed a increasing in resistance. The sensitivity of the gas sensor was increased by increasing the gas concentrations. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained the sensitivity. And the comparison analysis to ZnO film gas sensor for detecting $NO_x$ gas. From the experiment result, we confirmed improvement of $NO_x$ gas detection characteristics using the MWCNT/ZnO composite film.

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics (NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석)

  • Son, Ju-Hyung;Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

Design and Fabrication of a Micro Gas Sensor Using Nano Sensing Materials on Multi-layer Type Micro Platform with Low Power Consumption (마이크로 플랫폼 상에 나노 감지 재료를 이용한 저전력 NOX 센서의 설계 및 제조)

  • Park, Sang-Il;Park, Joon-Shik;Lee, Min-Ho;Park, Kwang-Bum;Kim, Seong-Dong;Park, Hyo-Derk;Lee, In-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • A novel multi-layer type micro gas sensor for $NO_X$ detection was designed and fabricated. Micro platform defined as type II-1 in this article for micro gas sensor was fabricated using the MEMS technology to meet the demanding needs of lower power consumption. Nano composite materials were fabricated with nanosized tin oxide powder and $\underline{m}$ulti-$\underline{w}$all $\underline{c}$arbon $\underline{n}$ano $\underline{t}$ube (MWCNT) to improve sensitivity. We investigated characteristics of fabricated multi-layer type micro gas sensor with $NO_2$ concentration variations at constant 2.2 V. Sensitivity (S) of micro gas sensor were observed to increase from 2.9, to 7.4 and 11.2 as concentrations of $NO_2$ gases increased from 2.4 ppm, to 3.6 ppm and 4.9 ppm. When 2.4 ppm of $NO_2$ gas was applied, response time and recovery time of micro gas sensor were recorded as 101 seconds and 142 seconds, respectively.

  • PDF

Gas Sensing Characteristics of Catalyst-added $In_2O_3$ Thick Film for Detecting $NO_x$ of High Concentration (고농도 $NO_x$ 감지용 $In_2O_3$ 후막가스센서의 Al, Ru 및 $SnO_2$ 첨가에 의한 특성 향상)

  • 박종현;김동현;이종영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1322-1326
    • /
    • 1999
  • In2O3 thick film gas sensor for detecting NOx gas of high concentration was fabricated by a screen printing technique. This work focussed on investigation of the change of sensitivity to NOx gas with firing temperatures of sensing layer and on improvement of the sensitivity by adding catalysts such as Al,. Ru, and SnO2 The cross sensitivites of sensor to CO, H2, CH4 and i-C4H10 gases were also examined under NO2 gas concentration of 200ppm Pure In2O3 gas sensor prepared at a firing temperature of 50$0^{\circ}C$ showed a maximum sensitivity to NOx gas at the operating temperature of 40$0^{\circ}C$ Al(0.004 wt%)-In2O3 sensor largely improved the sensitivities to both NO2 and NO gas and showed a superior selectivity compared with other gas sensors.

  • PDF

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

Fabrication and Gas-Sensing Characteristics of $NO_x$ Sensors using $WO_3$ Thin Films ($WO_3$ 박막을 이용한 $NO_x$ 센서의 제조 및 가스감도 특성)

  • 유광수;김태송;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1369-1376
    • /
    • 1995
  • The WO3 thin-film NOx sensor which is of practical use and includes the heater and the temperature sensor was fabricated. The WO3 thin films as a gas-sensing layer was deposited at ambient temperature in a high-vacuum resistance heated evaporator. The highest sensitivity of the WO3 thin-film sensor to NOx was obtained under the condition of the annealing temperature of 50$0^{\circ}C$ and the operating temperature of 30$0^{\circ}C$. The gas sensing characteristics of this sensor was excellent, i.e. high sensitivity (Rgas/Rair in 3 ppm NO2=53) and fast response time (4 seconds).

  • PDF

Fabrication of NO sensor integrated SiC micro heaters for harsh environments and its characteristics (SiC 마이크로 히터가 내장된 극한 환경용 NO 센서의 제작과 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.197-201
    • /
    • 2010
  • This paper describes the fabrication and characteristics of a NO sensor using ZnO thin film integrated 3C-SiC micro heater based on polycrystalline 3C-SiC thin film of operation in harsh environments. The sensitivity, response time, and operating properties in high temperature and voltages of NO sensors based SiC MEMS are measured and analyzed. The sensitivity of device with pure ZnO thin film at the heater operating power of 13.5 mW ($300^{\circ}C$) is 0.875 in NO gas concentration of 0.046 ppm. In the case of Pt doping, the sensitivity of at power consumption of 5.9 mW ($250^{\circ}C$) was 1.92 at same gas flow rate. The ZnO with doped Pt was showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film. The NO gas sensor integrated SiC micro heater is more strength than others in high voltage and temperature environments.