• Title/Summary/Keyword: NO$_x$ sensor

Search Result 113, Processing Time 0.034 seconds

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.260-266
    • /
    • 2021
  • Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.

Vertically aligned cupric oxide nanorods for nitrogen monoxide gas detection

  • Jong-Hyun Park;Hyojin Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Utilizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate relevant gas sensors by means of potential enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned cupric oxide (CuO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a CuO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Cu metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the CuO nanorods array of the single monoclinic tenorite crystalline phase. From gas sensing measurements for the nitrogen monoxide (NO) gas, the vertically aligned CuO nanorod array is observed to have a highly responsive sensitivity to NO gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO at 200 ℃ and a low NO detection limit of 2 ppm in dry air. These results along with a facile fabrication process demonstrate that the CuO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO gas sensors.

Analysis of Potential on Measurement of SO2 and NO2 using Radiative Transfer Model and Hyperspectral Sensor (복사전달모델과 초분광센서를 이용한 아황산가스와 이산화질소의 농도 측정 가능성 분석)

  • Shin, Jung-il;Kim, Ik-Jae;Choi, Min-Jae;Lim, Seong-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.658-663
    • /
    • 2018
  • Current measuring methods for air quality are based on ground measurement networks and satellite data. New methods of collecting evidence with advanced sensors are needed because current methods have limitations in collecting evidence for the illegal emission of air pollutants at narrow areas or specific sites. This study analyzed the possibility of using an ultraviolet hyperspectral sensor to measure the concentration of nitrogen dioxide and sulfur dioxide. Two types of spectra were used: simulated spectra for gases with various concentrations using a radiative transfer model and observed spectra for each gas for a concentration. To understand the possibility of using a hyperspectral sensor, the differences between the simulated spectra and the observed spectra were analyzed, and the variation of simulated spectra were then analyzed according to the concentration. The results showed good agreement between observed spectra and simulated spectra. In addition, the absorption depth at specific wavelengths in the simulated spectra had a very strong correlation with the gas concentration. The gas concentration could be estimated using the hyperspectral sensor. In the future, validation would be needed to estimate the gas concentration through observations of various concentrations of gases using a hyperspectral sensor.

Fabrication and Characteristics of Micro Platform for Micro Gas Sensor with Low Power Consumption (마이크로 가스센서의 저전력 구동을 위한 마이크로 플랫폼의 제작과 특성)

  • Jang, Woong-Jin;Park, Kwang-Bum;Kim, In-Ho;Park, Soon-Sup;Park, Hyo-Derk;Lee, In-Kyu;Park, Joon-Shik
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.317-321
    • /
    • 2011
  • A Micro platform for micro gas sensor consisted of micro heater, insulator, and sensing electrode on 2 ${\mu}m$ thick $SiN_x$ membrane. Three types of micro platforms were designed and fabricated with membrane sizes. Total size of micro platform was 2.6 mm by 2.6 mm. Measured power consumptions were 28 mW, 28 mW, and 32.5 mW for Type 1, Type 2, and Type 3. At this moment, temperatures of membranes on the platforms were $295^{\circ}C$, $297^{\circ}C$, and $296^{\circ}C$, respectively. Fabricated micro platform considered appropriate to apply for low power consumption micro gas sensor. Micro gas sensors were prepared by the sequence that $SnO_2$ nanopowder pastes were dropped on membrane of Type 1 platforms, dried in oven, heat-treated with micro heaters in platforms. One of the micro gas sensors was tested for gas response to 1157 ppm, 578 ppm, and 231 ppm of methane and 1.68 ppm, 0.84 ppm, and 0.42 ppm of $NO_2$.

Characteristics of TiO2 Nanotube Gas Sensor Preparedby Hydrothermal Treatment (수열처리에 의한 TiO2 나노 튜브 센서의 가스 검지 특성)

  • Seo, Min-Hyun;Oh, Sang-Jin;Kida, Tetsuya;Shimanoe, Kengo;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.437-441
    • /
    • 2007
  • Preparation and morphology control of $TiO_2$ nano powders for gas sensor applications are investigated. $TiO_2$ nanopowders with rutile and anatase structures were prepared by controlling the pH value of a precursor solution without any heat treatment. The mean particle size of $TiO_2$ powders were below 10nm. The prepared $TiO_2$ nano powders were hydrothermal treated by NaOH solution. The sample was washed in HCl solution. As a result and $TiO_2$ nanotubes were formed. The lengths of $TiO_2$ nanotube were $1{\mu}m$ and the diameters were 10nm. Crystal structure and microstructure of $TiO_2$ nanotube were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). As-prepared $TiO_2$ nanotube powders have several advantages of nano particle size and high surface area and could be a prominent candidate for nano-sensors. The sensitivity of $TiO_2$ nanotube sensor was measured for toluene and NO in this study.

Enhanced Gas Sensing Properties of Pt-Loaded TeO2 Nanorods

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1851-1855
    • /
    • 2012
  • The $NO_2$ gas sensing properties of multiple-networked, Pt-loaded $TeO_2$ nanorod sensors were examined. Scanning electron microscopy revealed nanowires with diameters of 50-100 nm and lengths of a few micrometers. Transmission electron microscopy and X-ray diffraction showed that the nanrods were tetragonal-structured, single crystal $TeO_2$. The Pt-loaded $TeO_2$ nanorod sensors exhibited sensitivities of 11.00, 10.26, 11.23 and 11.97% at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively, at $300^{\circ}C$. These sensitivities were more than 10 times higher than those of bare-$TeO_2$ nanorod sensors. The response times of the sensors were 310, 260, 270 and 230 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The recovery times of the Pt-loaded $TeO_2$ nanorods were 390, 330, 335, and 330 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The origin of the enhanced sensing properties of the $TeO_2$ nanorods by Pt loading is discussed.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

Gas sensing characteristics of $LaCoO_3$ thick-films ($LaCoO_3$ 후막의 가스 감지 특성)

  • Shin, Jeong-Ho;Jang, Jae-Young;Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.454-460
    • /
    • 1999
  • $LaCoO_3$ thick-films for gas sensing layers were prepared on alumina substrate by screen printing method. The sensitivities to $C_4H_{10}$, $NH_3$, NO and CO gases were investigated for different heat treatment temperatures of the films. Their structural properties were examined by X-Ray Diffraction measurements and SEM photographs. The sensitivity of $LaCoO_3$ thick-film to CO gas was much higher than those of $C_4H_{10}$, $NH_3$, and NO gases. The optimal heat treatment and operating temperatures were $800^{\circ}C$ and $150^{\circ}C$, respectively. The sensitivities of $LaCoO_3$ thick-films to 500ppm and 1250ppm CO gas were 72% and 95%, respectively.

  • PDF

NO gas-sensing properties of In2O3 nanobelt films prepared by thermal evaporation (진공증착법으로 제조한 In2O3 나노벨트막의 NO가스감지특성)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.406-410
    • /
    • 2006
  • The films of indium oxide $In_{2}O_{3}$) were deposited onto $SiO_{2}$ coated Si wafers by a thermal evaporation method. Substrate temperature was varied from $25^{\circ}C$ to $300^{\circ}C$. Deposition rate increased to $250^{\circ}C$ and then decreased rapidly. The crystallographic properties and surface morphologies of the films were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The films deposited at $250^{\circ}C$ were found to have a nanobelt structure. Resistor-type gas-sensors were fabricated with $In_{2}O_{3}$ films using Pt as electrodes. The resistance variation of $In_{2}O_{3}$ films with the concentration of NO gas was measured. The $In_{2}O_{3}$ films deposited at $250^{\circ}C$ showed the highest sensitivity to the NO gas.

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan;Lee, So-Hyun;Kim, Jung-Hwan;Kim, Jin-Eun;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2303-2308
    • /
    • 2009
  • A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.