DOI QR코드

DOI QR Code

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2021.10.07
  • Accepted : 2021.10.26
  • Published : 2021.10.31

Abstract

Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B04030425).

References

  1. C.A. Grimes, E.C. Dickey, M.V. Pishko (Eds.), Encyclopedia of Sensors, American Scientific Publishers, Stevenson Ranch, 2006.
  2. T. Seiyama, A. Kato, K. Fujishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films, Anal. Chem. 34 (1962) 1502-1503. https://doi.org/10.1021/ac60191a001
  3. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide materials for development of integrated gas sensors: a comprehensive review, Crit. Rev. Solid State Mater. Sci. 29 (2004) 111-188. https://doi.org/10.1080/10408430490888977
  4. M. Aslam, V.A. Chaudhary, I.S. Mulla, S.R. Sainkar, A.B. Mandale, A.A. Belhekar, K. Vijayamohanan, A highly sensitive ammonia gas sensor using surface-ruthenated zinc oxide, Sens. Actuators A 75 (1999) 162-167. https://doi.org/10.1016/S0924-4247(99)00050-3
  5. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique, Sens. Actuators B 239 (2017) 1185-1193. https://doi.org/10.1016/j.snb.2016.08.130
  6. U. Latza, S. Gerdes, X. Baur, Effects of nitrogen dioxide on human health: systematic review of experimental and epidemiological studies conducted between 2002 and 2006, Int. J. Hyg. Environ. Health 212 (2009) 271-287. https://doi.org/10.1016/j.ijheh.2008.06.003
  7. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives, Sens. Actuators B 171 (2012) 25-42. https://doi.org/10.1016/j.snb.2012.05.026
  8. N.L. Hung, H. Kim, S.-K. Hong, D. Kim, Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots, Sens. Actuators B 151 (2010) 127-132. https://doi.org/10.1016/j.snb.2010.09.036
  9. N.L. Hung, H. Kim, S.-K. Hong, D. Kim, A simple fabrication method of randomly oriented polycrystalline zinc oxide nanowires and their application to gas sensing, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 015002 (6pp). https://doi.org/10.1088/2043-6262/2/1/015002
  10. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15 (2003) 353-389. https://doi.org/10.1002/adma.200390087
  11. J.-H. Park, H. Kim, Photoelectrochemical properties of a vertically aligned zinc oxide nanorod photoelectrode, J. Korean Ins. Surf. Eng. 51 (2018), 237-242. https://doi.org/10.5695/JKISE.2018.51.4.237
  12. R. Zhang, P.-G. Yin, N. Wang, L. Guo, Photoluminescence and Raman Scattering of ZnO nanorods, Solid State Sci. 11 (2009) 865-869. https://doi.org/10.1016/j.solidstatesciences.2008.10.016
  13. P. Sinsermsuksakui, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Atomic layer deposition of tin monosulfide thin films, Adv. Energy Mater. 1 (2011) 1116-1125. https://doi.org/10.1002/aenm.201100330
  14. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys. 83 (1998) 5447-5451. https://doi.org/10.1063/1.367375
  15. M. Che, A.J. Tench, Characterization and reactivity of mononuclear oxygen species on oxide surfaces, Adv. Catal. 31 (1982) 77-133.
  16. M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering, J. Am. Ceram. Soc. 59 (1976) 4-8. https://doi.org/10.1111/j.1151-2916.1976.tb09374.x
  17. R.W.J. Scott, S.M. Yang, G. Chabanis, N. Coombs, D.E. Williams, G.A. Ozin, Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensor, Adv. Mater. 13 (2001) 1468-1472. https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O