DOI QR코드

DOI QR Code

화력발전용 슈퍼 듀플렉스 스테인리스 강 조관재의 용접 후 열처리 조건이 국부부식 저항성에 미치는 영향

Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications

  • 이준호 (순천대학교 신소재공학과) ;
  • 박진성 (순천대학교 신소재공학과) ;
  • 조동민 (순천대학교 신소재공학과) ;
  • 홍승갑 (포스코 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Lee, Jun Ho (Department of Advanced Materials Engineering, Suncheon National University) ;
  • Park, Jin sung (Department of Advanced Materials Engineering, Suncheon National University) ;
  • Cho, Dong Min (Department of Advanced Materials Engineering, Suncheon National University) ;
  • Hong, Seung Gab (POSCO Technical Research Laboratories) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Suncheon National University)
  • 투고 : 2021.10.01
  • 심사 : 2021.10.29
  • 발행 : 2021.10.31

초록

This study examined the influence of post weld heat treatment (PWHT) conditions on corrosion behaviors of laser-welded super duplex stainless steel tube. Due to the high cooling rate of laser welding, the phase fraction of ferrite and austenite in the weld metal became unbalanced significantly. In addition, the Cr2N particles were precipitated adjacent to the fusion line, which can be susceptible to the localized corrosion. On the other hand, the phase fraction in the weld metal was restored at a ratio of 5:5 when exposed to temperatures above 1060 ℃ during the post weld heat treatment. Nevertheless, the high beltline speed during the PWHT, leading to the insufficient cooling rate, caused a precipitation of σ phase at the interface between ferrite/austenite in both weld metal and base metal. This resulted in the severe corrosion damages and significant decrease in critical pitting temperature (CPT), which was even lower than that measured in as-welded condition. Moreover, the fraction of σ phase in the center region of post weld heat treated steel tube was obtained to be higher than in the surface region. These results suggest that the PWHT conditions for the steel tube should be optimized to ensure the high corrosion resistance by excluding the precipitation of σ phase even in center region.

키워드

과제정보

This work was supported by a Research promotion program of SCNU.

참고문헌

  1. J. O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol. 8 (1992) 685-700. https://doi.org/10.1179/mst.1992.8.8.685
  2. W. Min, L. Guoping, W. Lixin, H. Lifeng, W. Yinghui, Temperature dependence of precipitation mechanism of intragranular v phase in super duplex stainless steel S32750, Mater. Lett. 287 129304 (2021). https://doi.org/10.1016/j.matlet.2021.129304
  3. B. Deng, Y. M. Jiang, J. Gao, J. Li, Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel, J. Alloys Compd. 493 (2010) 461-464. https://doi.org/10.1016/j.jallcom.2009.12.127
  4. A. R. Kannan, N. S. Shanmugam, V. Rajkumar, M. Vishnukumar, Insight into the microstructural features and corrosion properties of wire arc additive manufactured super duplex stainless steel (ER2594), Mater. Lett. 270 (2020) 127680. https://doi.org/10.1016/j.matlet.2020.127680
  5. P. D. Bilmes, C. L. Liorente, L. S. Huaman, L. M. Gassa, C. A. Gervasi, Microstructure and pitting corrosion of 13CrNiMo weld metals, Corros. Sci. 48 (2006) 3261-3270. https://doi.org/10.1016/j.corsci.2005.10.009
  6. Y. Yang, B. Yan, J. Li, J. Wang, The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel, Corros. sci. 53 (2011) 3756-3763. https://doi.org/10.1016/j.corsci.2011.07.022
  7. M. E. Williams, V. J. Gadgil, J. M. Krougman, F. P. Ijsseling, The effect of σ-phase precipitation at 800℃ on the corrosion resistance in sea-water of a high alloyed duplex stainless steel, Corros. Sci. 36 (1994) 871-881. https://doi.org/10.1016/0010-938X(94)90176-7
  8. M. Sadeghian, M. Shamanian, A. Shafyei, Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel, Mater. Des. 60 (2014) 678-684. https://doi.org/10.1016/j.matdes.2014.03.057
  9. R. G. Barrows, J. B. Newkirk, A modified system for predicting σ formation, Metall. Mater. Trans. 3B (1972) 2889-2893.
  10. K. Migiakis, G. D. Papadimitriou, Effect of nitrogen and nickel on the microstructure and mechanical properties of plasma welded UNS S32760 super-duplex stainless steels, J. Mater. Sci. 44 (2009) 6372-6383. https://doi.org/10.1007/s10853-009-3878-9
  11. Z. Zhang, H. Zhao, H. Zhang, J. Hu, J. Jin, Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment, Corros. Sci. 121 (2017) 22-31. https://doi.org/10.1016/j.corsci.2017.02.006
  12. B. M. Sim, T. S. Hong, M. A. A. Hanim, E. J. N. Tchan, M. K. Talari, The Influence of Post Weld Heat Treatment Precipitation on Duplex Stainless Steels Weld Overlay towards Pitting Corrosion, Materials 12 (2019) 3285. https://doi.org/10.3390/ma12203285
  13. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo, J. Li, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds, Corros. Sci. 62 (2012) 42-50. https://doi.org/10.1016/j.corsci.2012.04.047
  14. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion resistance of electron beam-welded duplex stainless steel, Corros. Sci. 141 (2018) 30-45. https://doi.org/10.1016/j.corsci.2018.06.030
  15. J. S. Park, D. M. Cho, S. G. Hong, S. J. Kim, Effects of reducing atmospheres of bright annealing on the surface and corrosion characteristics of super duplex stainless steel tubes, Surf. Coat. Tech. 423 (2021) 127621. https://doi.org/10.1016/j.surfcoat.2021.127621
  16. D. M. Cho, J. S. Park, S. G. Hong, J. K. Hwang, S. J. Kim, Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions, J. Korean Inst. Surf. Eng. 54 (2021) 102-111. https://doi.org/10.5695/JKISE.2021.54.3.102
  17. Annual Book of ASTM Standards, ASTM G 48, Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution.
  18. Annual Book of ASTM Standards, ASTM G 150, Standard test method for electrochemical critical pitting temperature testing of stainless steels.
  19. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, H. Maza, Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds, Mater. Charact. 59 (2008) 447-453. https://doi.org/10.1016/j.matchar.2007.03.004
  20. Y. Han, D. Zou, J. Chen, Y. Wu, J. Liu, J. Tian, Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium-high strain rates, Mater. Charact. 62 (2011) 198-203. https://doi.org/10.1016/j.matchar.2010.11.013
  21. M. Yousefieh, M. Shamanian, A. Saatchi, Influence of Heat Input in Pulsed Current GTXW Process on Microstructure and Corrosion Resistance of Duplex Stainless Steel Welds, J. Iron Steel Res. Int. 18 (2011) 65-39.
  22. Y. Zhang, S. Cheng, S. Wu, F. Cheng, The evolution of microstructure and intergranular corrosion resistance of duplex stainless steel joint in multi-pass welding, J. Mater. Process. Technol. 277 (2020) 116471. https://doi.org/10.1016/j.jmatprotec.2019.116471
  23. S. T. Kim, S. H. Jang, I. S. Lee, Y. S. Park, Effects of solution heat-treatment and nitrogen in shielding gas on the resistance to pitting corrosion of hyper duplex stainless steel welds, Corros. Sci. 53 (2011) 1939-1947. https://doi.org/10.1016/j.corsci.2011.02.013
  24. X. Zhang, K. Wang, Q. Zhou, J. Ding, S. Ganguly, G. Marzio, D. Yang, X. Xu, P. Dirisu, S. W. Williams, Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594), Mater. Sci. Eng. A 762 (2019) 138097. https://doi.org/10.1016/j.msea.2019.138097
  25. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, C. Zhou, Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint, Appl. Surf. Sci. 404 (2017) 110-128. https://doi.org/10.1016/j.apsusc.2017.01.252
  26. J. Liao, Nitride Precipitation in Weld HAZs of a Duplex Stainless Steel, ISIJ Int. 41 (2001) 460-467. https://doi.org/10.2355/isijinternational.41.460
  27. S. Herzman, The influence of nitrogen on microstructure and properties of highly alloyed stainless steel welds, ISIJ Int. 41 (2001) 580-589. https://doi.org/10.2355/isijinternational.41.580
  28. N. H. Petterson, D. Lindell, F. Lindberg, A. Borgenstam, Formation of Chromium Nitride and Intragranular Austenite in a Super Duplex Stainless Steel, Metallur. Mater. Trans. A 50 (2019) 5594-5601. https://doi.org/10.1007/s11661-019-05489-2
  29. Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, J. Li, Effect of a brief post-weld heat treatment on the microstructure evolution and pitting corrosion of laser beam welded UNS S31803 duplex stainless steel, Corros. Sci. 65 (2012) 472-480. https://doi.org/10.1016/j.corsci.2012.08.054
  30. N. Sathirachinda, R. Pettersson, S. Wessman, J. Pan, Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS, Corros. Sci. 52 (2010) 179-186. https://doi.org/10.1016/j.corsci.2009.08.057
  31. M. Martins, L. R. N. Forti, Effect of aging on impact properties of ASTM A890 Grade 1C super duplex stainless steel, Mater. Charact. 59 (2008) 162-166. https://doi.org/10.1016/j.matchar.2007.02.010
  32. X. Z. Liang, M. F. Dodge, W. Liang, H. B. Dong, Precipitation of chromium nitride nano-rods on lamellar carbides along austenite-ferrite boundaries in super duplex stainless steel, Scr. Mater. 127 (2017) 45-48. https://doi.org/10.1016/j.scriptamat.2016.09.004
  33. V. Muthupandi, P. B. Srinivasan, S. K. Seshadri, S. Sundaresan, Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds, Mater. Sci. Eng. A 358 (2003) 9-16. https://doi.org/10.1016/S0921-5093(03)00077-7
  34. M. C. Young, L. W. Tsay, C. -S. Shin, and S. L. I. Chan, The effect of short time post-weld heat treatment on the fatigue crack growth of 2205 duplex stainless steel welds, Int. J. Fatigue 29 (2007) 2155-2162. https://doi.org/10.1016/j.ijfatigue.2007.01.004
  35. R. Magnabosco, Kinetics of Sigma Phase Formation In a Duplex Stainless Steel, Mater. Res. 12 (2009) 327-327. https://doi.org/10.1590/S1516-14392009000300012
  36. H. Sieurin, R. Sandstrom, Sigma phase precipitation in duplex stainless steel 2205, Mater. Sci. Eng. A 444 (2007) 271-276. https://doi.org/10.1016/j.msea.2006.08.107
  37. R. N. Gunn, Duplex stainless steels: microstructure, properties and applications, R. N. Gunn, Abington publishing, Cambridge (1997) 26.
  38. V. A. Hosseini, L. Karlsson, C. Ornek, P. Reccagni, S. Wessman, D. Engelberg, Microstructure and functionality of a uniquely graded super duplex stainless steel designed by a novel arc heat treatment method, Mater. Charact. 139 (2018) 390-400. https://doi.org/10.1016/j.matchar.2018.03.024
  39. R. Marin, H. Combeau, J. Zollinger, M. Dehmas, B. Rouat, A. Lamontagne, D. Cardinaux, L. Lhenry-Robert, Solidification path and phase transformation in super-austenitic stainless steel UNS S31254, IOP. Conf. Ser. Mater. Sci. Eng. 529 (2019) 012008. https://doi.org/10.1088/1757-899X/529/1/012008
  40. G. Fargas, A. Mestra, A. Mateo, Effect of sigma phase on the wear behavior of a super duplex stainless steel, Wear 303 (2013) 584-590. https://doi.org/10.1016/j.wear.2013.04.010
  41. M. V. Biezma, U. Martin, P. Linhardt, J. Ress, C. Rodriguez, D. M. Bastidas, Non-destructive techniques for the detection of sigma phase in duplex stainless steel: A comprehensive review, Eng. Fail. Anal. 122 (2021) 105227. https://doi.org/10.1016/j.engfailanal.2021.105227
  42. V. A. Hosseini, L. Karlsson, S. Wessman, N. Fuertes, Effect of Sigma Phase Morphology on the Degradation of Properties in a Super Duplex Stainless Steel, Materials 11 (2018) 933. https://doi.org/10.3390/ma11060933