• Title/Summary/Keyword: NCEP reanalysis data

검색결과 66건 처리시간 0.019초

북반구 겨울철 에디들에 의한 운동량, 열 그리고 수분 수송: 세 가지 재분석 자료 비교 (Eddy Momentum, Heat, and Moisture Transports During the Boreal Winter: Three Reanalysis Data Comparison)

  • 문혜진;하경자
    • 대기
    • /
    • 제26권4호
    • /
    • pp.649-663
    • /
    • 2016
  • This study investigates eddy transports in terms of space and time for momentum, heat, and moisture, emphasizing comparison of the results in three reanalysis data sets including ERA-Interim from the European Center for Medium-range Weather Forecasts (ECMWF), NCEP2 from the National Center for Environmental Prediction and the Department of Energy (NCEP-DOE), and JRA-55 from the Japan Meteorological Agency (JMA) during boreal winter. The magnitudes for eddy transports of momentum in ERA-Interim are represented as the strongest value in comparison of three data sets, which may be mainly come from that both zonal averaged meridional and zonal wind tend to follow the hierarchy of ERA-Interim, NCEP2, and JRA-55. Whereas in relation to heat and moisture eddy transports, those of NCEP2 are the strongest, implying that zonal averaged air temperature (specific humidity) tend to follow the raking of NCEP2, ERA-Interim, and JRA-55 (NCEP2, JRA-55, and ERA-Interim), except that transient eddy transports for heat in ERA-Interim are the strongest involving both meridional wind and air temperature. The stationary and transient eddy transports in the context of space and time correlation, and intensity of standard deviation demonstrate that the correlation (intensity of standard deviation) influence the structure (magnitude) of eddy transports. The similarity between ERA-Interim and NCEP2 (ERA-Interim and JRA-55) of space correlation (time correlation) closely resembles among three data sets. A resemblance among reanalysis data sets of space correlation is larger than that of time correlation.

NCEP 재분석 자료를 이용한 전지구 지표층의 2000-2009년 풍속 분포 (Global Distribution of Surface Layer Wind Speed for the years 2000-2009 Based on the NCEP Reanalysis)

  • 변재영;최영진;이재원
    • 대기
    • /
    • 제21권4호
    • /
    • pp.439-446
    • /
    • 2011
  • NCEP reanalysis data were analyzed in order to provide distribution of global wind resource and wind speed in the surface layer for the years 2000-2009. Wind speed at 10 m above ground level (AGL) was converted to wind speed at 80 m above the ground level using the power law. The global average 80 m wind speed shows a maximum value of $13ms^{-1}$ at the storm track region. High wind speed over the land exists in Tibet, Mongolia, Central North America, South Africa, Australia, and Argentina. Wind speed over the ocean increased with a large value in the South China Sea, Southeast Asia, East Sea of the Korea. Sea surface wind in Western Europe and Scandinavia are suitable for wind farm with a value of $7-8ms^{-1}$. Areas with great potential for wind farm are also found in Eastern and Western coastal region of North America. Sea surface wind in Southern Hemisphere shows larger values in the high latitude of South America, South Africa and Australia. The distribution of low-resolution reanalysis data represents general potential areas for wind power and can be used to provide information for high-resolution wind resource mapping.

재분석자료들을 이용한 최근 35년(1979~2013) 동북아시아 상층제트의 변동특성 (Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets)

  • 소은미;서명석
    • 대기
    • /
    • 제25권2호
    • /
    • pp.235-248
    • /
    • 2015
  • In this study, we analyzed the three dimensional variations (latitude, longitude, and height of Jet core) and wind speed of upper Jet stream in the East Asian region using recent 35 years (1979~2013) of four reanalysis data (NCEP-R2, MERRA, ERA-Interim. and JRA-55). Most of Jet core is located in $30.0{\sim}37.5^{\circ}N$ and $13.0{\sim}157.5^{\circ}E$ although there are slight differences among the four reanalysis data. The wind speed differences among reanalysis are about $3m\;s^{-1}$ regardless of seasons, the weakest in NCEP-R2 and the strongest in JRA-55. Although significance level is not high, most of reanalysis showed that the Jet core has a tendency of southward moving during spring and winter, but moving northward during summer and fall. This amplified seasonal variation of Jet core suggests that seasonal variations of weather/climate can be increased in the East Asian region. The longitude of Jet core has a tendency of systematically westward moving and decreasing of zonal variations regardless of averaging methods and reanalysis data. In general, the Jet core shows a tendency of moving south-west-ward and upward, getting intensified during spring and winter regardless of the reanalysis data. However, the Jet core shows a tendency of moving westward and downward, and getting weakened during summer. In fall, there were no distinctive trends not only in wind speed but also three dimensional locations compared to other seasons. Although the significance levels are not high and variation patterns are slightly different according to the reanalysis data, our findings are more or less different from the previous results. So, more works are needed to clarify the three dimensional variation patterns of Jet core over the East Asian region as a result of global warming.

세 가지 재분석 자료에서의 겨울철 북반구 평균 자오면 순환-에디 상호작용 (Mean Meridional Circulation-Eddy Interaction in Three Reanalysis Data Sets during the Boreal Winter)

  • 문혜진;하경자
    • 대기
    • /
    • 제25권3호
    • /
    • pp.543-557
    • /
    • 2015
  • The present study examines an interaction between the eddy and mean meridional circulation (MMC) comparing the results in three reanalysis data sets including ERA-Interim, NCEP2, and JRA-55 during the boreal winter in the Northern Hemisphere. It is noteworthy that the JRA-55 tends to produce stronger MMC compared to those of others, which is mainly due to the weak eddy flux. ERA-Interim represents the ensemble averages of MMC. The MMC-eddy interaction equation was adopted to investigate the scale interaction of the eddy momentum flux (EMF), eddy heat flux (EHF), and diabatic heating (DHT) with MMC. The EMF (EHF) shows a significant correlation coefficient with streamfunction under (above) 200 hPa-level. The perturbation (time mean) part of each eddy is dominant compared to another part in the EMF (EHF). The DHT is strongly interacted with streamfunction in the region between the equator and extra-tropical latitude over whole vertical column. Thus, the dominant term in each significant region modulates interannual variability of MMC. The inverse (proportional) relationship between MMC and pressure (meridional) derivative of the momentum (heat) divergence contributions is well represented in the three reanalysis data sets. The region modulated interannual variability of MMC by both EMF and DHT (EHF) is similar in ERA-Interim and JRA-55 (ERA-Interim and NCEP2). JRA-55 shows a lack of significant region of EHF due to the high resolution, compared to other data sets.

20세기 재분석 자료(20CR)를 이용한 남극대륙의 기온 변화 (Change of Temperature using the Twentieth Century Reanalysis Data (20CR) on Antarctica)

  • 조일성;지준범;이규태;채남이;윤영준
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.73-83
    • /
    • 2012
  • Antarctica is very sensitive to climate change but the number of stations is not sufficient to accurately analyze climate change in this regoin. Model reanalysis data supplements the lack of observation and can be used as long term data to verify climate change. In this study, the 20CR (Twentieth Century Reanalysis) Project data from NCEP/NCAR and monthly mean data (temperature, solar radiation and longwave radiation) from 1871 to 2008, was used to analyze the temperature trend and change in radiation. The 20CR data was used to validate the observation data from Antarctica since 1950 and the correlation coefficients between these data were determined to be over 0.95 at all stations. The temperature increased by approximately $0.23^{\circ}C$/decade during the study period and over $0.20^{\circ}C$/decade over all of the months. This increasing trend was observed throughout the Antarctica and a slight increase was observed in the Antarctic Peninsula. In addition, solar radiation (surface) and longwave radiation (surface and top of atmosphere) trends correlated with the increase in temperature. As a result, outgoing longwave radiation at the surface is attenuated by atmospheric water vapor or clouds and radiation at the top of the atmosphere was reduced. In addition, the absorbed energy in the atmosphere increases the temperature of the atmosphere and surface, and then the heated surface emits more longwave radiation. Eventually these processes are repeated in a positive feedback loop, which results in a continuous rise in temperature.

HadCRU4 관측 온도자료와 20CR 재분석 자료 비교로부터 확인된 1900년대 초반 극지역 평균 온도 추정의 불확실성 (Uncertainty in the Estimation of Arctic Surface Temperature during Early 1900s Revealed by the Comparison between HadCRU4 and 20CR Reanalysis)

  • 김백민;김진영
    • 한국기후변화학회지
    • /
    • 제6권2호
    • /
    • pp.95-104
    • /
    • 2015
  • To discuss whether we have credible estimations about historical surface temperature evolution since industrial revolution or not, present study investigates consistencies and differences of averaged surface air temperature since 1900 between the multiple data sources: Hadley Center Climate Research Unit (HadCRU4) surface air temperature data, ECMWF 20 Century Reanalysis data (ERA20CR), and NCEP 20 Century Reanalysis data (NCEP20CR). Averaged surface temperatures are obtained for the global, polar (90S~60S, 60N~0N), midlatitude (60S~30S, 30N~60N), tropical (30S~30N) region, separately. From the analysis, we show that: 1) spatio-temporal inhomogenity and scarcity of HadCRU4 data are not major obstacles in the reliable estimation of global surface air temperature. 2) Globally averaged temperature variability is largely contributed by those of tropical and midlatitude, which occupy more than 70% of earth surface in area. 3) Both data show consistent temperature variability in tropical region. 4) ERA20CR does not capture warm period over Arctic region in early 1900s, which is obvious feature in HadCRU4 data. Discrepancies among datasets suggest that high-level caution is needed especially in the interpretation of large Arctic warming in the early 1900s, which is often regarded as a natural variability in the Arctic region.

한반도 주변에서 MODIS와 NCEP/NCAR 재분석 자료를 이용한 에어로졸과 구름의 연관성 분석 (An Analysis of Aerosol-Cloud Relationship Using MODIS and NCEP/NCAR Reanalysis Data around Korea)

  • 김유준;이진화;김병곤
    • 한국대기환경학회지
    • /
    • 제27권2호
    • /
    • pp.152-167
    • /
    • 2011
  • MODIS/Terra level 3 and NCEP/NCAR Reanalysis data from 2001 to 2008 have been analyzed to understand long-term aerosol and cloud optical properties, and their relationships around Korea. Interestingly, cloud fraction(CF) has the similar annual variation to aerosol optical depth (${\tau}_a$) without any temporal significant trend. Horizontal distributions of ${\tau}_a$ showed the substantial horizontal gradient from China to Korea, especially with the strong difference over the Yellow Sea, which could represent the evidence of the anthropogenic influence from China in the perspective of long-term average. Specifically the negative correlations between ${\tau}_a$ and liquid-phase cloud effective radius ($r_e$) were shown on the monthly-average basis, only in summer with significant associations over the Yellow Sea, but not in the other seasons and/or specific regions. Relationship between ${\tau}_a$ and CF for the low-level liquid-phase clouds exhibited the overall positive correlation, being consistent with cloud lifetime effect. Meanwhile static stability showed no deterministic relationships with ${\tau}_a$ as well as CF. The dependence of aerosol-cloud relationship on the meteorological conditions should be examined more in detail with the satellite remote sensing and reanalysis data.

동아시아 지역 오존 전량 재분석 자료의 검증 (Evaluation of the Total Column Ozone in the Reanalysis Datasets over East Asia)

  • 한보름;오지영;박선민;손석우
    • 대기
    • /
    • 제29권5호
    • /
    • pp.659-669
    • /
    • 2019
  • This study assesses the quality of the total column ozone (TCO) data from five reanalysis datasets against nine independent observation in East Asia. The assessed datasets are the ECMWF Interim reanalysis (ERAI), Monitoring Atmosphere Composition and Climate reanalysis (MACC), Copernicus Atmosphere Monitoring Service reanalysis (CAMS), the NASA Modern-Era Retrospective analysis for Research and Applications, Version2 (MERRA2), and NCEP Climate Forecast System Reanalysis (CFSR). All datasets reasonably well capture the spatial distribution, annual cycle and interannual variability of TCO in East Asia. In particular, characteristics of TCO according to the latitude difference were similar at all points with a maximum bias of less than about 4%. Among them, CAMS and CFSR show the smallest mean bias and root-mean square error across all nine ground-based observations. This result indicates that while TCO data in modern reanalyses are reasonably good, CAMS and CFSR TCO data are the best for analysing the spatio-temporal variability and change of TCO in East Asia.

겉보기 열원 및 습기 흡원의 세 재분석 자료 비교와 몬순 지역별 분석 (Three Reanalysis Data Comparison and Monsoon Regional Analysis of Apparent Heat Source and Moisture Sink)

  • 하경자;김서경;오효은;문수연
    • 대기
    • /
    • 제28권4호
    • /
    • pp.415-425
    • /
    • 2018
  • The roles of atmospheric heating formation and distribution on the global circulation are of utmost importance, and those are directly related to not only spatial but also temporal characteristics of monsoon system. In this study, before we clarify the characteristics of apparent heat source <$Q_1$> and moisture sink <$Q_2$>, comparisons of three reanalysis datasets (NCEP2, ERA-Interim, and JRA-55) in its global or regional patterns are performed to clearly evaluate differences among datasets. Considering inter-hemispheric difference of global monsoon regions, seasonal means of June-July-August and December-January-February, which is summer (winter) and winter (summer) in the Northern (Southern) Hemisphere are employed respectively. Here we show the characteristics of eight different regional monsoon regions and find contributions of <$Q_2$> to <$Q_1$> for the regional monsoon regions. Each term in apparent heat source and moisture sink is shown to come from the ERA-Interim dataset, since the ERA-Interim could be representative of three datasets. The NCEP2 data has a different characteristic in the ratio of <$Q_2$> and <$Q_1$> because it overestimates <$Q_1$> compared to the other two different datasets. The Australia monsoon has been performing better over time, while some regional monsoons (South America, North America, and North Africa) have been showing increasing data inconsistency. In addition, the three reanalysis datasets are getting different marching with time, in particular since the early 2000s over South America, North America, and North Africa monsoon regions. The recent inconsistency among the three datasets that may be associated with the global warming hiatus remains unexplored.

태풍 기상장의 신뢰도 분석: 태풍 산바(1216) (Analysis of Reliability of Weather Fields for Typhoon Sanba (1216))

  • 권갑근;조명환;류경호;윤성범
    • 한국해안·해양공학회논문집
    • /
    • 제32권6호
    • /
    • pp.465-480
    • /
    • 2020
  • 2012년 남해안에 내습한 태풍 산바에 의해 발생한 폭풍해일과 파랑을 JMA-MSM 예보기상자료, NCEP-CFSR 재분석 기상자료, ECMWF-ERA5 재분석 기상자료, JTWC의 최적경로를 이용한 기상자료를 이용하여 수치모의하고, 계산된 해일고를 전국 해안의 항만에서 관측된 폭풍해일 시계열 자료와 비교하였으며, 파랑에 대해서는 계산된 유의파고를 해상 부이 및 수압식 파고 관측 자료와 비교하였다. 이 비교를 통해 태풍 산바에 대한 각종 기상장의 신뢰도를 평가하였다. 그 결과 JMA-MSM 기상자료와 NCEP-CFSR 기상자료가 가장 신뢰도가 높았고, ECMWF-ERA5 기상자료는 전반적으로 해일고나 파고의 크기가 작게 나타났으나, 태풍 전면부의 수렴대는 가장 잘 재현하는 것으로 나타났다. JTWC의 최적경로를 이용한 기상자료는 신뢰도가 가장 낮게 나타났다.