DOI QR코드

DOI QR Code

Eddy Momentum, Heat, and Moisture Transports During the Boreal Winter: Three Reanalysis Data Comparison

북반구 겨울철 에디들에 의한 운동량, 열 그리고 수분 수송: 세 가지 재분석 자료 비교

  • Moon, Hyejin (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Ha, Kyung-Ja (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
  • 문혜진 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 하경자 (부산대학교 지구환경시스템학부 대기과학전공)
  • Received : 2016.09.01
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

This study investigates eddy transports in terms of space and time for momentum, heat, and moisture, emphasizing comparison of the results in three reanalysis data sets including ERA-Interim from the European Center for Medium-range Weather Forecasts (ECMWF), NCEP2 from the National Center for Environmental Prediction and the Department of Energy (NCEP-DOE), and JRA-55 from the Japan Meteorological Agency (JMA) during boreal winter. The magnitudes for eddy transports of momentum in ERA-Interim are represented as the strongest value in comparison of three data sets, which may be mainly come from that both zonal averaged meridional and zonal wind tend to follow the hierarchy of ERA-Interim, NCEP2, and JRA-55. Whereas in relation to heat and moisture eddy transports, those of NCEP2 are the strongest, implying that zonal averaged air temperature (specific humidity) tend to follow the raking of NCEP2, ERA-Interim, and JRA-55 (NCEP2, JRA-55, and ERA-Interim), except that transient eddy transports for heat in ERA-Interim are the strongest involving both meridional wind and air temperature. The stationary and transient eddy transports in the context of space and time correlation, and intensity of standard deviation demonstrate that the correlation (intensity of standard deviation) influence the structure (magnitude) of eddy transports. The similarity between ERA-Interim and NCEP2 (ERA-Interim and JRA-55) of space correlation (time correlation) closely resembles among three data sets. A resemblance among reanalysis data sets of space correlation is larger than that of time correlation.

Keywords

References

  1. Ait-Chaalal, F., and T. Schneider, 2015: Why eddy momentum fluxes are concentrated in the upper troposphere. J. Atmos. Sci., 72, 1585-1604. https://doi.org/10.1175/JAS-D-14-0243.1
  2. Becker, E., G. Schmitz, and R. Geprags, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49, 182-199. https://doi.org/10.3402/tellusa.v49i2.14464
  3. Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, doi:10.1029/2007GL030971.
  4. Caballero, R., 2008: Hadley cell bias in climate models linked to extratropical eddy stress. Geophys. Res. Lett., 35, L18709, doi:10.1029/2008GL035084.
  5. Dee, D., and Coauthors, 2011: The ERA-interim reanalysis:configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  6. Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 2499-2513. https://doi.org/10.1175/JAS3486.1
  7. Ebita, A., and Coauthors, 2011: The Japanese 55-year reanalysis "JRA-55": An interim report. Soi. Online. Lett. Atmos., 7, 149-152.
  8. Grotjahn, R., 1993: Global Atmosphere Circulations:Observations and Theories. Oxford University Press, 249-264.
  9. Hare, S. H. E., and I. N. James, 2001: Baroclinic developments in jet entrances and exits. I: linear normal modes. Quart. J. Roy. Meteor. Soc., 127, 1293-1303. https://doi.org/10.1002/qj.49712757409
  10. Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 1494-1497. https://doi.org/10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2
  11. Hu, Q., Y. Tawaye, S. Feng, Q. Hu, Y. Tawaye, and S. Feng, 2004: Variations of the northern hemisphere atmospheric energetics: 1948-2000. J. Climate, 17, 1975-1986. https://doi.org/10.1175/1520-0442(2004)017<1975:VOTNHA>2.0.CO;2
  12. James, I. N., 1995: Introduction to Circulating Atmosphere. Cambridge University Press, 117-125.
  13. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  14. Kang, I.-S., J.-S. Kug, M.-J. Lim, and D.-H. Choi, 2011:Impact of transient eddies on extratropical seasonalmean predictability in DEMETER models. Climate Dyn., 37, 509-519. https://doi.org/10.1007/s00382-010-0873-4
  15. Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 2859-2871. https://doi.org/10.1175/1520-0469(2001)058<2859:HCDIAP>2.0.CO;2
  16. Kim, Y.-H., and M.-K. Kim, 2013: Examination of the global lorenz energy cycle using MERRA and NCEPreanalysis 2. Climate Dyn., 40, 1499-1513. https://doi.org/10.1007/s00382-012-1358-4
  17. Kuo, H.-L., 1956: Forced and free merdional circulations in the atmosphere. J. Meteor., 13, 561-568. https://doi.org/10.1175/1520-0469(1956)013<0561:FAFMCI>2.0.CO;2
  18. Kuroda, Y., and K. Kodera, 2004: Role of the Polar-night Jet Oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter. J. Geophys. Res., 109, D11112, doi:10.1029/2003JD004123.
  19. Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, doi:10.1029/2007GL029985.
  20. Marques, C. A. F., A. Rocha, J. Corte-Real, J. M. Castanheira, J. Ferreira, and P. Melo-Goncalves, 2009: Global atmospheric energetic from NCEP-reanalysis 2 and ECMWF-ERA40 reanalysis. Int. J. Climatol., 29, 59-174.
  21. Marques, C. A. F., A. Rocha, and J. Corte-Real, 2010: Comparative energetic of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain. Dyn. Atmos. Oceans., 50, 375-399. https://doi.org/10.1016/j.dynatmoce.2010.03.003
  22. Moon, H., and K.-J. Ha, 2015: Mean meridional circulation-eddy interaction in three reanalysis data sets during the boreal winter. Atmosphere, 25, 543-557 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.3.543
  23. Park, H.-S., S.-P. Xie, and S.-W. Son, 2013: Poleward stationary eddy heat transport by the Tibetan Plateau and Equatorward Shift of Westerlies during Northern Winter. J. Atmos. Sci., 70, 3288-3301. https://doi.org/10.1175/JAS-D-13-039.1
  24. Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192-3211. https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2
  25. Song, Z., and M. Zhang, 2007: Changes of the Boreal Winter Hadley circulation in the NCEP-NCAR and ECMWF reanalyses: A comparative study. J. Climate, 20, 5191-5200. https://doi.org/10.1175/JCLI4260.1
  26. Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.
  27. Ulbrich, U., and P. Speth, 1991: The global energy cycle of stationary and transient atmospheric waves: result from ECMWF analyses. Meteor. Atmos. Phys., 45, 125-131. https://doi.org/10.1007/BF01029650
  28. Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333-3350. https://doi.org/10.1175/JAS3821.1
  29. Yun, K.-S., Y.-W. Seo, K.-J. Ha, J.-Y. Lee, and Y. Kajikawa, 2014: Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO. Asia-Pac. J. Atmos. Sci., 50, 531-540. https://doi.org/10.1007/s13143-014-0042-5