DOI QR코드

DOI QR Code

Evaluation of the Total Column Ozone in the Reanalysis Datasets over East Asia

동아시아 지역 오존 전량 재분석 자료의 검증

  • Han, Bo-Reum (School of Earth and Environmental Sciences, Seoul National University) ;
  • Oh, Jiyoung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Park, Sunmin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
  • 한보름 (서울대학교 지구환경과학부) ;
  • 오지영 (서울대학교 지구환경과학부) ;
  • 박선민 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2019.11.30
  • Accepted : 2019.12.15
  • Published : 2019.12.31

Abstract

This study assesses the quality of the total column ozone (TCO) data from five reanalysis datasets against nine independent observation in East Asia. The assessed datasets are the ECMWF Interim reanalysis (ERAI), Monitoring Atmosphere Composition and Climate reanalysis (MACC), Copernicus Atmosphere Monitoring Service reanalysis (CAMS), the NASA Modern-Era Retrospective analysis for Research and Applications, Version2 (MERRA2), and NCEP Climate Forecast System Reanalysis (CFSR). All datasets reasonably well capture the spatial distribution, annual cycle and interannual variability of TCO in East Asia. In particular, characteristics of TCO according to the latitude difference were similar at all points with a maximum bias of less than about 4%. Among them, CAMS and CFSR show the smallest mean bias and root-mean square error across all nine ground-based observations. This result indicates that while TCO data in modern reanalyses are reasonably good, CAMS and CFSR TCO data are the best for analysing the spatio-temporal variability and change of TCO in East Asia.

Keywords

References

  1. Baek, S. K., and H. K. Cho, 2002: Long-term trend of total column ozone associated with decadal variation over Seoul. Atmosphere, 12, 421-425 (in Korean).
  2. Bai, K., N.-B. Chang, R. Shi, H. Yu, and W. Gao, 2017: An intercomparison of multidecadal observational and reanalysis data sets for global total ozone trends and variability analysis. J. Geosphys. Res. Atmos., 122, 7119-7139, doi:10.1002/2016JD025835.
  3. Boccara, G., A. Hertzog, C. Basdevant, and F. Vial, 2008: Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. J. Geophys. Res.: Atmos., 113, D20115. https://doi.org/10.1029/2008jd010116
  4. Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial Evaluation of the Climate. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2015-104606, v. 43, 139 pp.
  5. Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. Roy. Meteor. Soc., 75, 351-363. https://doi.org/10.1002/qj.49707532603
  6. Calvo, N., L. M. Polvani, and S. Solomon, 2015: On the surface impact of Arctic stratospheric ozone extremes. Environ. Res. Lett., 10, 094003, doi:10.1088/1748-9326/10/9/094003.
  7. Cariolle, D., and M. Deque, 1986: Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res. Atmos., 91, 10825-10846. https://doi.org/10.1029/JD091iD10p10825
  8. Cariolle, D., and H. Teyssedre, 2007: A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations. Atmos. Chem. Phys., 7, 2183-2196. https://doi.org/10.5194/acp-7-2183-2007
  9. Davis, S. M., and Coauthors, 2017: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys., 17, 12743-12778, doi:10.5194/acp-17-12743-2017.
  10. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  11. Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. R. Soc. Lond. A., 236, 187-193.
  12. Entzian, G., and D. Peters, 1999: Very low zonally asymmetric ozone values in March 1997 above the North Atlantic-European region, induced by dynamic processes. Ann. Geophys., 17, 933-940. https://doi.org/10.1007/s00585-999-0933-4
  13. Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303. https://doi.org/10.1029/2006jd008332
  14. Fang, X., and Coauthors, 2019: Rapid increase in ozonedepleting chloroform emissions from China. Nature Geosci., 12, 89-93, doi:10.1038/s41561-018-0278-2.
  15. Fusco, A. C., and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12, 1619-1629. https://doi.org/10.1175/1520-0442(1999)012<1619:IVOTOA>2.0.CO;2
  16. Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, doi: 10.1175/JCLI-D-16-0758.1.
  17. Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern Annular mode. Geophys. Res. Lett., 33, L23704. https://doi.org/10.1029/2006GL027721
  18. Gonzalez, P. L. M., L. M. Polvani, R. Seager, and G. J. P. Correa, 2014: Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America. Climate Dyn., 42, 1775-1792, doi: 10.1007/s00382-013-1777-x.
  19. Greisiger, K. M., D., Peters, G. Entzian, and C.-O. Hinrichs, 1998: The mid-latitude horizontal and vertical structure of the zonally asymmetric intraseasonal and interannual ozone variability in boreal winters. Climate Dyn., 14, 891-904. https://doi.org/10.1007/s003820050263
  20. Grytsai, A., Z. Grytsal, A. Evtushevsky, and G. Milinevsky, 2005: Interannual variability of planetary waves in the ozone layer at 65$^{\circ}$S. Int. J. Remote Sens., 26, 3377-3387. https://doi.org/10.1080/01431160500076350
  21. Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 5229-5236. https://doi.org/10.5194/acp-7-5229-2007
  22. Inness, A., and Coauthors, 2013: The MACC reanalysis: an 8 yr data set of atmospheric composition. Atmos. Chem. Phys., 13, 4073-4109, doi:10.5194/acp-13-4073-2013.
  23. Inness, A., and Coauthors, 2019: The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys., 19, 3515-3556, doi:10.5194/acp-19-3515-2019.
  24. Ivy, D. J., S. Solomon, N. Calvo, and D. W. J. Thompson, 2017: Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ. Res. Lett., 12, 024004, doi:10.1088/1748-9326/aa57a4.
  25. Kim, J., H.-K. Cho, Y. G. Lee, S. N. Oh, and S.-K. Baek, 2005: Updated trends of stratospheric ozone over Seoul. Atmosphere, 15, 101-118 (in Korean with English abstract).
  26. Madronich, S., R. L. McKenzie, L. O. Bjorn, and M. M. Caldwell, 1998: Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photoch. Photobio. B, 46, 5-19. https://doi.org/10.1016/S1011-1344(98)00182-1
  27. Marshall, G. J., 2003: Trends in the Southern annular mode from observations and reanalyses. J. Climate, 16, 4134-4143. https://doi.org/10.1175/1520-0442(2003)016<4134:titsam>2.0.co;2
  28. McCormack, J. P., S. D. Eckermann, D. E. Siskind, and T. J. McGee, 2006: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6, 4943-4972. https://doi.org/10.5194/acp-6-4943-2006
  29. Park, S. S., H. K. Cho, J. H. Koo, H. Lim, H. Lee, J. Kim, and Y. G. Lee, 2019: Monitoring and long-term trend of total column ozone from Dobson Spectrophotometer in Seoul (1985-2017). Atmosphere, 29, 13-20 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2019.29.1.013
  30. Randel, W. J., F. Wu, J. M. Russell III, J. W. Waters, and L. Froidevaux, 1995: Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo. J. Geophys. Res. Atmos., 100, 16753-16764. https://doi.org/10.1029/95JD01001
  31. Rigby, M., and Coauthors, 2019: Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature, 569, 546-550, doi:10.1038/s41586-019-1193-4.
  32. Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1058, doi:10.1175/2010BAMS3001.1.
  33. Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185-2208, doi: 10.1175/JCLI-D-12-00823.1.
  34. Sharp, E., P. Dodds, M. Barrett, and C. Spataru, 2015: Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information. Renew. Energ., 77, 527-538, doi:10.1016/j.renene.2014.12.025.
  35. Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705. https://doi.org/10.1029/2009gl038671
  36. Son, S.-W., and Coauthors, 2018: Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models. Environ. Res. Lett., 13, 054024, doi:10.1088/1748-9326/aabf21.
  37. Steinbrecht, W., B. Hassler, H. Claude, P. Winkler, and R. S. Stolarski, 2003: Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys., 3, 1421-1438. https://doi.org/10.5194/acp-3-1421-2003
  38. Steinbrecht, W., U. Kohler, H. Claude, M. Weber, J. P. Burrows, and R. J. van der A, 2011: Very high ozone columns at northern mid-latitudes in 2010. Geophys. Res. Lett., 38, L06803, doi:10.1029/2010GL046634.
  39. Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. PartII: Trends. J. Climate, 13, 1018-1036. https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2
  40. Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895-899. https://doi.org/10.1126/science.1069270
  41. WMO, 2003: Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and Monitoring Project Report 47, World Meteorological Organization, 498 pp.
  42. Xie, F., and Coauthors, 2018: An advanced impact of Arctic stratospheric ozone changes on spring precipitation in China. Climate Dyn., 51, 4029-4041, doi: 10.1007/s00382-018-4402-1.
  43. Zurek, R. W., G. L. Manney, A. J. Miller, M. E. Gelman, and R. M. Nagatani, 1996: Interannual variability of the north polar vortex in the lower stratosphere during the UARS mission. Geophys. Res. Lett., 23, 289-292. https://doi.org/10.1029/95GL03336