DOI QR코드

DOI QR Code

Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets

재분석자료들을 이용한 최근 35년(1979~2013) 동북아시아 상층제트의 변동특성

  • So, Eun-Mi (Department of Atmospheric Science, Kongju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University)
  • Received : 2015.02.16
  • Accepted : 2015.05.20
  • Published : 2015.06.30

Abstract

In this study, we analyzed the three dimensional variations (latitude, longitude, and height of Jet core) and wind speed of upper Jet stream in the East Asian region using recent 35 years (1979~2013) of four reanalysis data (NCEP-R2, MERRA, ERA-Interim. and JRA-55). Most of Jet core is located in $30.0{\sim}37.5^{\circ}N$ and $13.0{\sim}157.5^{\circ}E$ although there are slight differences among the four reanalysis data. The wind speed differences among reanalysis are about $3m\;s^{-1}$ regardless of seasons, the weakest in NCEP-R2 and the strongest in JRA-55. Although significance level is not high, most of reanalysis showed that the Jet core has a tendency of southward moving during spring and winter, but moving northward during summer and fall. This amplified seasonal variation of Jet core suggests that seasonal variations of weather/climate can be increased in the East Asian region. The longitude of Jet core has a tendency of systematically westward moving and decreasing of zonal variations regardless of averaging methods and reanalysis data. In general, the Jet core shows a tendency of moving south-west-ward and upward, getting intensified during spring and winter regardless of the reanalysis data. However, the Jet core shows a tendency of moving westward and downward, and getting weakened during summer. In fall, there were no distinctive trends not only in wind speed but also three dimensional locations compared to other seasons. Although the significance levels are not high and variation patterns are slightly different according to the reanalysis data, our findings are more or less different from the previous results. So, more works are needed to clarify the three dimensional variation patterns of Jet core over the East Asian region as a result of global warming.

Keywords

References

  1. Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803.
  2. Chang, C. P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. Springer, 89-127.
  3. Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.
  4. Chun, K.-E., 1981: An analysis of influences of Jet Stream over Korea. J. Sejung Univ., 8, 179-192.
  5. Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 1061-1078. https://doi.org/10.1175/JCLI-D-11-00127.1
  6. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  7. Dell'Aquila, A., V. Lucarini, P. M. Ruti, and S. Calmanti, 2005: Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEPNCAR and ECMWF reanalyses. Clim. Dynam., 25, 639-652. https://doi.org/10.1007/s00382-005-0048-x
  8. Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis "JRA-55": an interim report. Sci. Online Lett. Atmos., 7, 149-152.
  9. Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, doi:10.1126/science.1125566.
  10. Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci., 103, 14288-14293, doi:10.1073/pnas.0606291103.
  11. Holton, J. R., 1992: An introduction to dynamic meteorology. Elsevier, New York, 511 pp.
  12. Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. Disc., 7, 9367-9384. https://doi.org/10.5194/acpd-7-9367-2007
  13. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: The NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  14. Kim, B.-M., E.-H. Jung, G.-H. Lim, and H.-K. Kim, 2014: Analysis on winter atmosphereic variability related to arctic warming. Atmosphere, 24, 131-140 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.2.131
  15. Koch, P., H. Wernli, and H. C. Davies, 2006: An eventbased jet stream climatology and typology. Int. J. Climatol., 26, 283-301. https://doi.org/10.1002/joc.1255
  16. Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Atmos. Sci., 18, 172-191.
  17. Lee, Y.-Y., G.-H. Lim, and J.-S. Kug, 2009: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, doi: 10.1029/2009JD012813.
  18. Lewis, J. M., 2003: Ooishi's observation viewed in the context of jet stream discovery. Bull. Amer. Meteor. Soc., 84, 357-369. https://doi.org/10.1175/BAMS-84-3-357
  19. Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.
  20. Manney, G. L., and Coauthors, 2014: Climatology of Upper Tropospheric-Lower Stratospheric (UTLS) Jets and Tropopauses in MERRA. J. Climate, 27, 3248-3271. https://doi.org/10.1175/JCLI-D-13-00243.1
  21. McCabe G. J., M. P. Clark, and M.C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 2763-2768. https://doi.org/10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2
  22. Min, C.-H., 2010: Numerical analysis & scientific computing. Cheong moon gak, 225 pp.
  23. Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 1629-1642. https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2
  24. Ramage, C. S., 1952: Relationship of general circulation to normal weather over southern Asia and the western Pacific during the cool season. J. Meteor., 9, 403-408. https://doi.org/10.1175/1520-0469(1952)009<0403:ROGCTN>2.0.CO;2
  25. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, doi:10.1175/JCLI-D-11-00015.1.
  26. Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334-1337. https://doi.org/10.1038/nature09051
  27. Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363.
  28. Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 133, 2109-2115. https://doi.org/10.1002/qj.171
  29. Yang, S., K. M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15, 306-325. https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
  30. Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708. https://doi.org/10.1029/2006GL026377

Cited by

  1. Evaluation of a Regional Reanalysis and ERA-Interim over East Asia Using In Situ Observations during 2013–14 vol.56, pp.10, 2017, https://doi.org/10.1175/JAMC-D-16-0227.1