• 제목/요약/키워드: NC-machining

검색결과 416건 처리시간 0.023초

PC-based NC 공작기계의 소프트웨어 보간기 개발 (Development of Software Interpolators for PC-based NC Machine Tools)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.99-105
    • /
    • 1996
  • Increasing demands on precision machining of free-form surfaces have necessitated the tool to move not only with position error as small as possible, but also with smoothly varying feedrates. In this paper, linear, circular and spline interpolators were developed in reference-pulse type using PC. M-SAM and M-DAM were designed by the comparison and analysis of previous interpolation methods. Spline interpolator was designed to follow the free-form curves. To apply to the real cutting process, constant feedrate compensation and acceleration-deceleration compensation were conceived. Finally, its performance was tested using retrofitted milling machine. As a result, new interpolation algorithm is favorable in precision machining of free-form curves.

  • PDF

새로운 원호보간법에 의한 공구경로의 생성 (An improved NC-code generation method for circular interpolation)

  • 양민양;손태영;조현덕
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.77-83
    • /
    • 1997
  • This work is concerned with the algorithm of generating a new circular are interpolation. This research presents a new biarc curve fitting that is a circular interpolation method based on a triarc curve fitting. The triarc method, where a segment span is composed of three circular arcs, using maximum error estimation has the advantage of generating arc splines easily to a given tolerance. The new biarc method is called when the adjacent radii are the same in the same in the triarc method. In generating the machining data for various cam curves in CNC machining with the biarc method and the new biarc method, the latter accomp- lished faster NC-code generation, shorter NC-code block formation and machined the same cam profile more efficiently.

  • PDF

절삭력 모델 기반의 소프트웨어를 이용한 선삭가공최적화 (Turning Machining Optimization using Software Based on Cutting Force Model)

  • 안광우;전언찬;김태호
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.107-112
    • /
    • 2015
  • Increased productivity and cost reduction have emerged as the main goals of the industry due to the development of the machinery industry, and mechanical materials with excellent properties with the development of the machine tool industry are widely used in machine parts or structures. In addition, the cutting process of production plays a pivotal role in the production technology. Studies on cutting have involved a lot of research on the material, the cutting tool, the processing conditions, and numerical analysis. Due to the development of the computer through numerical analysis, cutting conditions, the assessment of cutting performance, and cutting quality could be predicted. This research uses the creation of the material model and AdvantEdge Production module for the NC code analysis. To improve the productivity, this research employs the optimization method to reduce cutting time.

5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 - (Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling -)

  • 소범식;정융호;윤재득
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

Z-map 기반 가공 검증모델을 이용한 칩부하 제어기 (Chip Load Control Using a NC Verification Model Based on Z-Map)

  • 백대균;고태조;박정환;김희술
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.68-75
    • /
    • 2005
  • This paper presents a new method for the optimization of feed rate in sculptured surface machining. A NC verification model based on Z-map was utilized to obtain chip load according to feed per tooth. This optimization method can regenerate a new NC program with respect to the commanded cutting conditions and the NC program that was generated from CAM system. The regenerated NC program has not only the same data of the ex-NC program but also the updated feed rate in every block. The new NC data can reduce the cutting time and produce precision products with almost even chip load to the feed per tooth. This method can also reduce tool chipping and make constant tool wear.

Development of ISO14649 Compliant CNC Milling Machine Operated by STEP-NC in XML Format

    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권5호
    • /
    • pp.27-33
    • /
    • 2003
  • G-code, another name of ISO6983, has been a popular commanding language for operating machine tools. This G-code, however, limits the usage of today's fast evolving high-performance hardware. For intelligent machines, the communications between machine and CAD/CAM departments become important, but the loss of information during generating G-code makes the production department isolated. The new standard for operating machine tools, named STEP-NC is just about to be standardized as ISO14649. As this new standard stores CAD/CAM information as well as operation commands of CNC machines, and this characteristic makes this machine able to exchange information with other departments. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other prototypes of STEP-NC milling machines, this system uses the STEP-NC file in XML file form as data input. This machine loads information from XML file and deals with XML file structure. It is possible for this machine to exchange information to other databases using XML. The STEP-NC milling machines in this research loads information from the XML file, makes tool paths for two5D features with information of STEP-NC, and machines automatically without making G-code. All software is programmed with Visual $C^{++}$, and the milling machine is built with table milling machine, step motors, and motion control board for PC that can be directly controlled by Visual $C^{++}$ commands. All software and hardware modules are independent from each other; it allows convenient substitution and expansion of the milling machine. Example 1 in ISO14649-11 having the full geometry and machining information and example 2 having only the geometry and tool information were used to test the automatic machining capability of this system.

다축 드릴 가공기의 NC 코드 검증 (Verification of NC code for Nulti-Axis Drilling machines)

  • 이희관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.263-268
    • /
    • 1999
  • The most important things to the tube the of the heat exchanger are the precision of t hole position and the quality of the drill face. Nowadays, 6 and 12 spindle multi-drilling machine controlled by CNC or used to drill holes of the tube sheet. The drilling of 12 axes can offer high speover three times as fast as the drilling of axis. However, the drilling of 12 axes h difficulty in controlling many motors to d spindles and assigning a corresponded numbe accurately to each axis. In the past, conventional method to inspect the code the drilling was machining holes on a thin plate previously which resulted in the productivity because it required a h production cost by machining and weldin time. In this thesis, there are two drilling codes different from CNC code. M code is used to control many motors and S code is used to assign a correspondent number for each axis. For increasing the productivity by removing process, this paper is intended to take simulation of the drill machining c including 6 and 12 axis on the persona computer.

  • PDF

Z-map 을 사용한 모의가공과 NC-code 의 검증 (Machining Simulation and NC-code Verification Using Z-map)

  • 최병규;정연찬
    • 산업공학
    • /
    • 제8권3호
    • /
    • pp.155-169
    • /
    • 1995
  • 일반적인 CAD/CAM 시스템을 이용해서 생성한 NC-code는 오류의 가능성의 항시 내포되어 있으므로, 실 가공하기 전에 NC-code의 불량 여부를 검사할 필요가 있다. 본 논문에서는 Z-map 형태의 계산모형을 이용한 모의가공의 계산방법을 볼엔드밀, 평엔드밀, 라운드엔드밀에 대해서 도식적으로 설명하였다. 또, 모의가공 된 형상만으로 NC-code의 불량 여부를 검사하는 자체적인 검사방법과 모의가공 된 형상과 설계형상을 비교해서 불량여부를 판별하는 비교 검사방법을 제시하였다. Z-am 모델을 모의가공과 가공형상의 검증에 사용하면, 빠른 속도로 실제가공 상황을 재현 할 수 있고 육안 검증을 포함한 다양한 수치적 검증이 가능하다. 또, 간단한 데이터 구조이므로 필요한 앨고리즘을 효율적이고, 로버스트하게 구현할 수 있다.

  • PDF

초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가 (Development and Evaluation of Ultra-precision Desktop NC Turning Machine)

  • 노승국;박종권;박현덕;김양근
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

DMLS와 NC복합가공기의 실용성 검토 (Analysis on the practicality and manufacture by DMLS and NC Multiple machines)

  • 문영대
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.34-40
    • /
    • 2015
  • In the study, Three-dimensional drawing parts for conformal cooling circuit cavity & core and their 3D Metal parts using DMLS(Direct MetalLaser Sintering) and NC integrated machining center were showned. For conformal cooling circuit cavity and core parts, I discussed its practicality to DMLS multiple machinins process introducing general manufacturing process and comparing with them.

  • PDF