• 제목/요약/키워드: N-MOSFET

검색결과 354건 처리시간 0.028초

Short Channel n-MOSFET의 Breakdown 전압

  • 김광수;이진효
    • ETRI Journal
    • /
    • 제9권1호
    • /
    • pp.118-124
    • /
    • 1987
  • Short channel n-MOSFET의 드레인-소오스 사이의 breakdown은 단순한 접합 breakdown이 아닌 avalanche-induced breakdown으로 p-MOSFET, long channel n-MOSFET의 breakdown 전압보다 훨씬 작은 값을 갖는다. Short channel n-MOSFET의 breakdown의 특징은 current-controlled 부저항 특성(snapback)이 나타나고, 게이트 전압에 따라 breakdown 전압보다 작은 sustainning 전압이 존재한다. 이와 같은 sustainning 전압은 short channel n-MOSFET의 안정한 동작에 또 하나의 제한 요소가 될 수 있다. 따라서 공정 및 회로 시뮬레이션을 위해, short channel n-MOSFET의 avalanche breakdown 현상에 대한 정확한 분석이 요구된다. Short channel n -MOSFET의 avalanche breakdown 현상을 분석하기 위해서Parasitic bipolar transistor를 도입한 분석적 모델을 이용하였다.

  • PDF

집적도 향상을 위한 비대칭 n-MOSFET의 전기적 특성 및 모델링 (Electric Characteristics and Modeling of Asymmetric n-MOSFETs for Improving Packing Density)

  • 공동욱;이재성;남기홍;이용현
    • 대한전자공학회논문지SD
    • /
    • 제38권7호
    • /
    • pp.464-472
    • /
    • 2001
  • 집적도 향상을 위해 사용되는 비대칭 n-MOSFET를 0.35 ㎛ CMOS공정으로 제조하여 그 전기적 특성을 조사고 전기적 모델을 제시하였다. 비대칭형 n-MOSFET는 대칭형 n-MOSFET에 비해 포화영역의 드레인 전류는 감소하였으며, 선형영역의 저항은 증가하였다. 그리고 비대칭형 n-MOSFET에서 보다 낮은 기판 전류가 측정되었다. 측정결과를 찬조하여 비대칭 n-MOSFET를 회로설계에 용이하게 사용할 수 있도록 기존의 대칭형 소자 모델을 개선한 새로운 모델을 제시하였다. 이 모델링의 정확성을 MEDICI 시뮬레이션을 통해 확인하였고, 대부분의 게이트 폭 범위에서 계산된 비대칭 n-MOSFET의 포화 전류 값은 측정값과 거의 일치하였다.

  • PDF

고전압 SiO2 절연층 nMOSFET n+ 및 p+ poly Si 게이트에서의 Positive Bias Temperature Instability 열화 메커니즘 분석 (Analysis of Positive Bias Temperature Instability Degradation Mechanism in n+ and p+ poly-Si Gates of High-Voltage SiO2 Dielectric nMOSFETs)

  • 윤여혁
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.180-186
    • /
    • 2023
  • 본 논문은 4세대 VNAND 공정으로 만들어진 고전압 SiO2 절연층 nMOSFET의 n+ 및 p+ poly-Si 게이트에서의 positive bias temperature instability(PBTI) 열화에 대해 비교하고 각각의 메커니즘에 대해 분석한다. 게이트 전극 물질의 차이로 인한 절연층의 전계 차이 때문에 n+/nMOSFET의 열화가 p+/nMOSFET의 열화보다 더 클 것이라는 예상과 다르게 오히려 p+/nMOSFET의 열화가 더 크게 측정되었다. 원인을 분석하기 위해 각각의 경우에 대해 interface state와 oxide charge를 각각 추출하였고, 캐리어 분리 기법으로 전하의 주입과 포획 메커니즘을 분석하였다. 그 결과, p+ poly-Si 게이트에 의한 정공 주입 및 포획이 p+/nMOSFET의 열화를 가속시킴을 확인하였다.

Strained SGOI n-MOSFET에서의 phonon-limited전자이동도의 Si두께 의존성 (Dependency of Phonon-limited Electron Mobility on Si Thickness in Strained SGOI (Silicon Germanium on Insulator) n-MOSFET)

  • 심태헌;박재근
    • 대한전자공학회논문지SD
    • /
    • 제42권9호
    • /
    • pp.9-18
    • /
    • 2005
  • 60 nm C-MOSFET 기술 분기점 이상의 고성능, 저전력 트랜지스터를 구현 시키기 위해 SiGe/SiO2/Si위에 성장된 strained Si의 두께가 전자 이동도에 미치는 영향을 두 가지 관점에서 조사 연구하였다. 첫째, inter-valley phonon 산란 모델의 매개변수들을 최적화하였고 둘째, strained Si 반전층의 2-fold와 4-fold의 전자상태, 에너지 밴드 다이어그램, 전자 점유도, 전자농도, phonon 산란율과 phonon-limited 전자이동도를 이론적으로 계산하였다. SGOI n-MOSFET의 전자이동도는 고찰된 SOI 구조의 Si 두께 모든 영역에서 일반적인 SOI n-MOSFET보다 $1.5\~1.7$배가 높음이 관찰 되었다. 이러한 경향은 실험 결과와 상당히 일치한다. 특히 strained Si의 두께가 10 nm 이하일 때 Si 채널 두께가 6 nm 보다 작은 SGOI n-MOSFET에서의 phonon-limited 전자 이동도는 일반 SOI n-MOSFET과 크게 달랐다. 우리는 이러한 차이가 전자들이 suained SGOI n-MOSFET의 반전층에서 SiGe층으로 터널링 했기 때문이고, 반면에 일반 SOI n-MOSFET에서는 캐리어 confinement 현상이 발생했기 때문인 것으로 해석하였다. 또한 우리는 10 nm와 3 nm 사이의 Si 두께에서는 SGOI n-MOSFET의 phonon-limited 전자 이동도가 inter-valley phonon 산란율에 영향을 받는 다는 것을 확인하였으며, 이러한 결과는 더욱 높은 드레인 전류를 얻기 위해서 15 nm 미만의 채널길이를 가진 완전공핍 C-MOSFET는 stained Si SGOI 구조로 제작하여야 함을 확인 했다

Hot electron에 의한 RF-nMOSFET의 DC및 RF 특성 열화 모델 (Hot electron induced degradation model of the DC and RF characteristics of RF-nMOSFET)

  • 이병진;홍성희;유종근;전석희;박종태
    • 전자공학회논문지D
    • /
    • 제35D권11호
    • /
    • pp.62-69
    • /
    • 1998
  • Hot carrier 스트레스후의 RF-nMOSFET의 DC 및 RF 특성열화를 분석하기 위해 기존의 열화 모델을 적용하였다. 드레인전류 열화보다 차단주파수 열화가 심하였으며 RF-nMOSFET의 열화변화율 n과 열화변수 m은 기존의 bulk MOSFET의 것과 같았다. Multi-finger 게이트 소자에서 finger수가 많을수록 열화가 적게 된 것은 큰 소스/드레인의 저항과 포화전압에 의한 것임을 알 수 있었다. 스트레스의 후의 RF성능 저하는 g/sub m/과 C/sub gd/의 감소와 g/sub ds/의 증가에 의한 것임을 알 수 있었다. 기판전류를 측정하므로 RF소자의 DC 및 RF특성 열화를 예견할 수 있었다.

  • PDF

반도체 단위소자의 펄스방사선 영향분석 (The analysis on the Pulsed radiation effect for semiconductor unit devices)

  • 정상훈;이남호;이민웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.775-777
    • /
    • 2016
  • 본 연구에서는 반도체 집적회로에 사용되는 단위소자인 nMOSFET, pMOSFET, NPN 트랜지스터를 0.18um 반도체공정으로 제작하고 펄스방사선 영향 분석을 수행하였다. 펄스방사선 조사시험 결과 nMOSFET의 경우 $2.07{\times}10^8rad(si)/s$ 이상의 선량에서 수십 nA의 광전류가 발생되었으며, pMOSFET의 경우 $3{\times}10^8rad(si)/s$ 이상의 선량에서도 광전류가 발생되지 않는 결과를 확인하였다. NPN 트랜지스터의 경우 MOSFET과는 다르게 광전류가 약 1uA 발생되었다. 따라서 내방사선 IC 설계시 BJT 보다는 MOSFET을 시용하여야 한다.

  • PDF

I 형 게이트 내방사선 n-MOSFET 구조 설계 및 특성분석 (Design of a radiation-tolerant I-gate n-MOSFET structure and analysis of its characteristic)

  • 이민웅;조성익;이남호;정상훈;김성미
    • 한국정보통신학회논문지
    • /
    • 제20권10호
    • /
    • pp.1927-1934
    • /
    • 2016
  • 본 논문에서는 일반적인 실리콘 기반 n-MOSFET(n-type Metal Oxide Semiconductor Field Effect Transistor)의 절연 산화막 계면에서 방사선으로부터 유발되는 누설전류 경로를 차단하기 위하여 I형 게이트 n-MOSEFT 구조를 제안하였다. I형 게이트 n-MOSFET 구조는 상용 0.18um CMOS(Complementary Metal Oxide Semiconductor) 공정에서 레이아웃 변형 기법을 이용하여 설계되었으며, ELT(Enclosed Layout Transistor)와 DGA(Dummy Gate-Assisted) n-MOSFET와 같은 레이아웃 변형 기법을 사용한 기존 내방사선 전자소자의 구조적 단점을 개선하였다. 따라서, 기존 구조와 비교하여 반도체 칩 제작에서 회로 설계의 확장성을 확보할 수 있다. 또한, 내방사선 특성 검증을 위하여 TCAD 3D(Technology Computer Aided Design 3-dimension) tool을 사용하여 모델링과 모의실험을 수행하였고, 그 결과 I형 게이트 n-MOSFET 구조의 내방사선 특성을 확인하였다.

고온에서 Schottky Barier SOI nMOS 및 pMOS의 전류-전압 특성 (Current-Voltage Characteristics of Schottky Barrier SOI nMOS and pMOS at Elevated Temperature)

  • 가대현;조원주;유종근;박종태
    • 대한전자공학회논문지SD
    • /
    • 제46권4호
    • /
    • pp.21-27
    • /
    • 2009
  • 본 연구에서는 고온에서 Schottky barrier SOI nMOS 및 pMOS의 전류-전압 특성을 분석하기 위해서 Er 실리사이드를 갖는 SB-SOI nMOSFET와 Pt 실리사이드를 갖는 SB-SOI pMOSFET를 제작하였다. 게이트 전압에 따른 SB-SOI nMOS 및 pMOS의 주된 전류 전도 메카니즘을 온도에 따른 드레인 전류 측정 결과를 이용하여 설명하였다. 낮은 게이트 전압에서는 온도에 따라 열전자 방출 및 터널링 전류가 증가하므로 드레인 전류가 증가하고 높은 게이트 전압에서는 드리프트 전류가 감소하여 드레인 전류가 감소하였다. 고온에서 ON 전류가 증가하지만 드레인으로부터 채널영역으로의 터널링 전류 증가로 OFF 전류가 더 많이 증가하게 되므로 ON/OFF 전류비는 감소함을 알 수 있었다. 그리고 SOI 소자나 bulk MOSFET 소자에 비해 SB-SOI nMOS 및 pMOS의 온도에 따른 문턱전압 변화는 작았고 subthreshold swing은 증가하였다.

짧은 채널 효과의 억제를 위한 ISRC (Inverted-Sidewall Recessed-Channel)구조를 갖는 0.1$\mu\textrm{m}$ nMOSFET의 특성 (Supperession of Short Channel Effects in 0.1$\mu\textrm{m}$ nMOSFETs with ISRC Structure)

  • 류정호;박병국;전국진;이종덕
    • 전자공학회논문지D
    • /
    • 제34D권8호
    • /
    • pp.35-40
    • /
    • 1997
  • To suppress the short channel effects in nMOSFET with 0.1.mu.m channel length, we have fabricated and characterized the ISRC n MOSFET with several process condition. When the recess oxide thickness is 100nm and the channel dose for threshold voltge adjustment is 6*10$^{12}$ /c $m^{-2}$ , B $F_{2}$$^{+}$, the maximum transconductance at $V_{DS}$ =2.0V is 455mS/mm and the BIDL is kept within 67mV. By comparing the ISRC n MOSFET with the conventioanl SHDD (shallowly heavily dopped drain) nMOSFET, we verify the suppression of short channel effects ISRC structure.e.

  • PDF

Strained Si/Relaxed SiGe/SiO2/Si 구조 FD n-MOSFET의 전자이동에 Ge mole fraction과 strained Si 층 두께가 미치는 영향 (Effect of Ge mole fraction and Strained Si Thickness on Electron Mobility of FD n-MOSFET Fabricated on Strained Si/Relaxed SiGe/SiO2/Si)

  • 백승혁;심태헌;문준석;차원준;박재근
    • 대한전자공학회논문지SD
    • /
    • 제41권10호
    • /
    • pp.1-7
    • /
    • 2004
  • SOI 구조에서 형성된 MOS 트랜지스터의 장점과 strained Si에서 전자의 이동도가 향상되는 효과를 동시에 고려하기 위해 buried oxide(BOX)층과 Top Si층 사이에 Ge을 삽입하여 strained Si/relaxed SiGe/SiO₂Si 구조를 형성하고 strained Si fully depletion(FD) n-MOSFET를 제작하였다. 상부 strained Si층과 하부 SiGe층의 두께의 합을 12.8nm로 고정하고 상부 strained Si 층의 두께에 변화를 주어 두께의 변화가 electron mobility에 미치는 영향을 분석하였다. Strained Si/relaxed SiGe/SiO2/Si (strained Si/SGOI) 구조위의 FD n-MOSFET의 전자 이동도는 Si/SiO₂/Si (SOI) 구조위의 FD n-MOSFET 에 비해 30-80% 항상되었다. 상부 strained Si 층과 하부 SiGe 층의 두께의 합을 12.8nm 로 고정한 shrined Si/SGOI 구조 FD n-MOSFET에서 상부층 strained Si층의 두께가 감소하면 하부층 SiGe 층 두께 증가로 인한 Ge mole fraction이 증가함에 의해 inter-valley scattering 이 감소함에도 불구하고 n-channel 층의 전자이동도가 감소하였다. 이는 strained Si층의 두께가 감소할수록 2-fold valley에 있는 전자가 n-channel 층에 더욱더 confinement 되어 intra-valley phonon scattering 이 증가하여 전자 이동도가 감소함이 이론적으로 확인되었다.