• Title/Summary/Keyword: N-H bond activation

Search Result 26, Processing Time 0.028 seconds

Nucleophilic Displacement at Sulfur Center (I). Halogen Exchange in Benzenesulfonyl Chlorides (유황의 친핵치환반응 (제1보) 염화 벤젠슬포닐의 할로겐 교환반응)

  • Jae Eui Lee;Ik Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.154-162
    • /
    • 1973
  • The rates and activation parameters for the halide $(Cl^{-}, Br^{-}, I^{-})$TeX> exchange reactions of substituted benzenesulfonyl-chloride, $XC_6H_4SO_2Cl$(X:p-MeO, H, p-Cl, p-Br, p-NO$_2l$) in dry acetone at two temperatures have been determined. It was found that the ion-pair of metal halide,$M^{+}X^{-}$, have negligible reactivity compared to free halide ions. It was also found that the nucleophilic order is $Cl^{-}>Br^{-}>I^{-}$for electron-donating substituent, and $Cl^{-}>I^{-}>Br^{-}$ for electron-withdrawing substituents. These results and convex nature of the Hammett plot are interpreted in the light of simple $S_N2$mechanism with the bond breaking becoming important for compounds with the electron withdra-wing substituents.

  • PDF

Pressure Effect on the Solvolysis of o-Methylbenzyl Chloride in Ethanol-Water Mixtures (o-메틸염화벤질의 가용매분해반응에 대한 압력의 영향)

  • Oh Cheun Kwun;Jin Burm Kyong;Yong Kyun Shin
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 1986
  • Rate constants for the solvolysis of o-methylbenzyl chloride were determined at 30$^{\circ}$ and 40$^{\circ}$C in aqueous ethanol mixtures under various pressures up to 1600 bar. From the rate constants, the activation parameters ${\Delta}V^{\neq}$, ${\Delta}{\beta}^{\neq}$, ${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$ and${\Delta}G^{\neq}$ were evaluated. The values exhibit the extremum behavior at about 0.30 mole fraction of ethanol. This behavior is discussed in terms of electrostriction. To examine the reaction mechanism by Laidler and Eyring equation, we compared the rate constants with the dielectric constants of aqueous ethanol and the number of water molecule participated in the transition state. It was concluded that solvolytic reaction proceeds via $S_N$1 mechanism.

  • PDF

Kinetic Studies for the Nucleopilic Substitution Reactions under High Pressure (친핵성 치환반응에 관한 고압에서의 속도론적 연구)

  • Kim Young Cheul;Kim Se Kyong
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.577-584
    • /
    • 1993
  • The reaction rates of para-substituted benzoyl chlorides with substituted pyridines have been measured employing the conductometry method in acetonitrile, and pseudo-first order and second order rate constants are determined at various pressures and temperatures. The activation parameters (${\Delta}V^\neq, {\Delta}{\beta}^{\neq}, {\Delta}H^{\neq}, {\Delta}S^{\neq} {\Delta}G^{\neq}$) and the Hammett ρ-values are determined from the values of rate constants. The values of △${\Delta}V^\neq, {\Delta}{\beta}^{\neq}and {\Delta}S^{\neq}$ are all negative. The Hammett ρ-values are negative for the nucleophile (ρ$_X$), and positive for the substrate (ρ$_Y$) over the pressure range studied. The results of kinetic studies for pressure and substituent show that these reactions proceed in typical S$_N$2 reaction mechanism and in bond formation favored with elevating pressure.

  • PDF

A Study on the Hydrolysis of Sarin and Soman by Merrifield-Type Diaminatedpolystyrene-Cu (II) Heterogeneous Polymers (Merrifield-Type Diaminatedpolystyrene-Cu (II) 불균일 촉매에 의한 Sarin과 Soman 분해반응 연구)

  • 정우영;계영식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.164-175
    • /
    • 2000
  • Three compounds of Cu(II)-loaded N,N,N'-trimethylethylenediaminated Merrifield-type polymers were synthesized with yields higher than 80%, and the hydrolysis reaction rates of O-isopropylmethyl-phosphonofluoridate(GB) and O-pinacolylmethylphosphonofluoridate (GD) catalyzed by them have been surveyed. GB and GD hydrolysis by Cu(II)-loaded polymers occurs via intermediate complex mechanism where rapid equilibrium to form intermediate complex between substrate and Cu(II)-loaded polymers($K_f$) is followed by rate determining hydrolysis step($k_1$). The measured activation parameters for $k_1$ are ${\Delta}H^{\ddag}$ : $17.75{\pm}0.98kJ/mol$ ${\Delta}S^{\ddag}$ / : $-218.42{\pm}3.35J/mol$ K, $E^{\circ}_a$ : $20.22{\pm}0.98kJ/mo1$ for GB and ${\Delta}H^{\ddag}$ / : $11.16{\pm}1.15kJ/mol,$${\Delta}S^{\ddag}$ /: $-258.57{\pm}3.93J/mol$ K, $E^{\circ}_a$ : $13.64{\pm}1.15 kJ/mol$ for GD. Standard enthalpy/entropy changes corresponding to the intermediate complex formation constant $K_f$ are ${\Delta}H^{\circ}$ : $37.05{\pm}2.19 kJ/mo1,$$ {\Delta}S^{\circ}$ : $163.12{\pm}7.49 J/mol$ K and ${\Delta}H^{\circ}$ : 418.59{\pm}2.04 kJ/mol,$ ${\Delta}S^{\circ}$ : 4111.92{\pm}6.98 J/mol$ K for GB and GD, respectively, The electron push-pull mechanism by Cu(II)-loaded polymers lowers the P-F bond breaking energy(~400 kJ/mol) to less than 1/20 compared to the case in which no Cu(II)-loaded resin presents. Analysis of $K_f$ and 4k_1$ over pH=6.5~8.0 range suggest that the GB and GD hydrolysis occurs intramolecularily with $pK_a$ =7.29 for ligated $H_2O$ and $t_{1/2}$=36.9 sec, $pK_a$ = 7.06 and $t_{1/2}$=177.7 sec for GB and GD, respectively.

  • PDF

A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior

  • Zhu, Jiahong;Xu, Yingjie;Feng, Xiao;Zhu, Xiao
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.148-155
    • /
    • 2018
  • To get a better understanding of the effect of physicochemical properties and microstructure on $SO_2$ absorption behavior of DESs with different molar ratios of EmimCl and EG (from 2:1 to 1:2), densities (${\rho}$), viscosities (${\eta}$), speeds of sound (u), refractive indices ($n_D$), and thermal decomposition temperatures ($T_d$) of EmimCl-EG DESs were measured and used to obtain the other derived properties, such as thermal expansion coefficient (${\alpha}_p$) and activation energy for viscous flow ($E_{\eta}$). Moreover, FT-IR spectra and in situ variable-temperature NMR spectroscopy were employed to study the microstructures of DESs. Based on physicochemical and spectroscopic properties, the influence of the concentrations of EmimCl on the interactions in DESs was explored to be associated with their $SO_2$ absorption behavior. The results show that the interactions between $Emim^+$ and $Cl^-$ of EmimCl is gradually weakening with increasing the concentration of EG in DESs by forming of hydrogen bond interaction of $O-H{\cdots}Cl^-$, resulting in a decrease of ${\rho}$, ${\eta}$, u, $n_D$, and $T_d$ of DESs, and hindering the charge-transfer interaction of $SO_2$ with $Cl^-$ and deceasing $SO_2$ capture capacity. Moreover, the $SO_2$ absorption capacity of DESs is proportional to their ${\rho}$ and $E_{\eta}$, respectively.

Kinetics of the Reaction of Phenacyl Bromide with Anilines in Methanol and Dimethylformamide (Phenacyl Bromide와 置換아닐린類와의 反應에 關한 反應速度論的 硏究)

  • Soo-Dong Yoh;Doo-Jung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.376-382
    • /
    • 1981
  • The rates and the activation parameters for the reaction of phenacyl bromide with substituted anilines in methanol and dimethylformamide were measured. The effects of substituted anilines were discussed. The rate of the reaction was increased with the electron donating power of substituent and showed larger value in DMF than in MeOH. The isokinetic relationship was shown between ${\delta}H^{\neq}$ and ${\delta}S^{\neq}$, isokinetic temperature was 539 and $400^{\circ}C$ in MeOH and DMF respectively, but p-nitro aniline was deviated from linearity in both solvents caused by solvent effects. The excellent linear relationship between log k and p$K_a$ of substituted anilines was observed by following equation. log k = 0.57p$K_a$-1.28 (r = 0.996) in MeOH at $45^{\circ}C$, log k = 0.65p$K_a$-0.88 (r = 0.970) in DMF at $45^{\circ}C$. From the Hammett plot, this reaction was a nucleophilic displacement of aniline to phenacyl bromide and the following equation was obtained at $45^{\circ}C$. log k/$k_0$ = -2.00${\sigma}$ + 0.06 (r = 0.985) in MeOH; log k/$k_0$ = -2.22${\sigma}$ + 0.08 (r = 0.995) in DMF. Large deviation of p-nitro aniline in DMF is resulted from solvent effects too. From above results, the substituent effect of this reaction can be described as $S_N2$ mechanism and bond formation more proceeds in DMF relative to MeOH.

  • PDF