DOI QR코드

DOI QR Code

A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior

  • Zhu, Jiahong (Department of Chemistry, Shaoxing University) ;
  • Xu, Yingjie (Department of Chemistry, Shaoxing University) ;
  • Feng, Xiao (Department of Chemistry, Shaoxing University) ;
  • Zhu, Xiao (School of Chemistry and Chemical Engineering, Qufu Normal University)
  • Received : 2018.02.05
  • Accepted : 2018.06.25
  • Published : 2018.11.25

Abstract

To get a better understanding of the effect of physicochemical properties and microstructure on $SO_2$ absorption behavior of DESs with different molar ratios of EmimCl and EG (from 2:1 to 1:2), densities (${\rho}$), viscosities (${\eta}$), speeds of sound (u), refractive indices ($n_D$), and thermal decomposition temperatures ($T_d$) of EmimCl-EG DESs were measured and used to obtain the other derived properties, such as thermal expansion coefficient (${\alpha}_p$) and activation energy for viscous flow ($E_{\eta}$). Moreover, FT-IR spectra and in situ variable-temperature NMR spectroscopy were employed to study the microstructures of DESs. Based on physicochemical and spectroscopic properties, the influence of the concentrations of EmimCl on the interactions in DESs was explored to be associated with their $SO_2$ absorption behavior. The results show that the interactions between $Emim^+$ and $Cl^-$ of EmimCl is gradually weakening with increasing the concentration of EG in DESs by forming of hydrogen bond interaction of $O-H{\cdots}Cl^-$, resulting in a decrease of ${\rho}$, ${\eta}$, u, $n_D$, and $T_d$ of DESs, and hindering the charge-transfer interaction of $SO_2$ with $Cl^-$ and deceasing $SO_2$ capture capacity. Moreover, the $SO_2$ absorption capacity of DESs is proportional to their ${\rho}$ and $E_{\eta}$, respectively.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of Zhejiang Province, National Natural Science Foundation of China, Shaoxing University

References

  1. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 70-71 (2003).
  2. Q. Zhang, K.D.O. Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 41 (2012) 7108. https://doi.org/10.1039/c2cs35178a
  3. D. Yang, Y. Han, H. Qi, Y. Wang, S. Dai, ACS Sustain. Chem. Eng. 5 (2017) 6382. https://doi.org/10.1021/acssuschemeng.7b01554
  4. E. Ali, M.K. Hadj-Kali, S. Mulyono, I. Alnashef, Int. J. Greenh. Gas Control 47 (2016) 342. https://doi.org/10.1016/j.ijggc.2016.02.006
  5. L.F. Zubeir, C. Held, G. Sadowski, M.C. Kroon, J. Phys. Chem. B 120 (2016) 2300. https://doi.org/10.1021/acs.jpcb.5b07888
  6. K. Zhang, S. Ren, Y. Hou, W. Wu, J. Hazard. Mater. 324 (2017) 457. https://doi.org/10.1016/j.jhazmat.2016.11.012
  7. M.A. Farajzadeh, M.R.A. Mogaddam, B. Feriduni, RSC Adv. 6 (2016) 47990. https://doi.org/10.1039/C6RA04103E
  8. Y.R. Lee, K.H. Row, J. Ind. Eng. Chem. 39 (2016) 87. https://doi.org/10.1016/j.jiec.2016.05.014
  9. L. Duan, L.-L. Dou, L. Guo, P. Li, E.-H. Liu, ACS Sustain. Chem. Eng. 4 (2016) 2405. https://doi.org/10.1021/acssuschemeng.6b00091
  10. G. Li, C. Yan, B. Cao, J. Jiang, W. Zhao, J. Wang, T. Mu, Green Chem. 18 (2016) 2522. https://doi.org/10.1039/C5GC02691A
  11. A. Wang, P. Xing, X. Zheng, H. Cao, G. Yang, X. Zheng, RSC Adv. 5 (2015) 59022. https://doi.org/10.1039/C5RA08950F
  12. M.J. Rodriguez-Alvarez, C. Vidal, S. Schumacher, J. Borge, J. Garcia-Alvarez, Chem. Eur. J. 23 (2017) 3425. https://doi.org/10.1002/chem.201605303
  13. D. Carriazo, M.C. Serrano, M.C. Gutierrez, M.L. Ferrer, F. del Monte, Chem. Soc. Rev. 41 (2012) 4996. https://doi.org/10.1039/c2cs15353j
  14. C. Florindo, L. Romero, I. Rintoul, L. Branco, I.M. Marrucho, ACS Sustain. Chem. Eng 6 (2018) 3888. https://doi.org/10.1021/acssuschemeng.7b04235
  15. D.V. Wagle, H. Zhao, G.A. Baker, Acc. Chem. Res. 47 (2014) 2299. https://doi.org/10.1021/ar5000488
  16. E.L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114 (2014) 11060. https://doi.org/10.1021/cr300162p
  17. W. Guo, Y. Hou, S. Ren, S. Tian, W. Wu, J. Chem. Eng. Data 58 (2013) 866. https://doi.org/10.1021/je300997v
  18. M. Francisco, A. van den Bruinhorst, M.C. Kroon, Angew. Chem. Int. Ed. 52 (2013) 3074. https://doi.org/10.1002/anie.201207548
  19. H. Passos, D.J.P. Tavares, A.M. Ferreira, M.G. Freire, J.A.P. Coutinho, ACS Sustain. Chem. Eng. 4 (2016) 2881. https://doi.org/10.1021/acssuschemeng.6b00485
  20. J. Zhu, K. Yu, Y. Zhu, R. Zhu, F. Ye, N. Song, Y. Xu, J. Mol. Liq. 232 (2017) 182. https://doi.org/10.1016/j.molliq.2017.02.071
  21. H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26 (2015) 1518. https://doi.org/10.1007/s10854-014-2570-2
  22. H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, Trans. Nonferrous Met. Soc. China 26 (2016) 759. https://doi.org/10.1016/S1003-6326(16)64166-3
  23. H. Teymourinia, M. Salavati-Niasari, O.Amiri, M. Farangi, J. Mol. Liq. 251 (2018) 267. https://doi.org/10.1016/j.molliq.2017.12.059
  24. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, H. Safardoust-Hojaghan, J. Mater. Sci.: Mater. Electron. 28 (2017) 16205. https://doi.org/10.1007/s10854-017-7522-1
  25. C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen, L. Qin, Appl. Catal. B: Environ. 220 (2018) 202. https://doi.org/10.1016/j.apcatb.2017.08.055
  26. C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, W. Xiong, Y. Deng, M. Wen, ACS Sustain. Chem. Eng. 6 (2018) 4174. https://doi.org/10.1021/acssuschemeng.7b04584
  27. G. Zeng, J. Wan, D. Huang, L. Hu, C. Huang, M. Cheng, W. Xue, X. Gong, R. Wan, D. Jiang, J. Hazard. Mater. 339 (2017) 354. https://doi.org/10.1016/j.jhazmat.2017.05.038
  28. L. Hu, J. Wan, G. Zeng, A. Chen, G. Chen, Z. Huang, K. He, M. Cheng, C. Zhou, W. Xiong, C. Lai, P. Xu, Environ. Sci.: Nano 4 (2017) 2018. https://doi.org/10.1039/C7EN00517B
  29. X. Tang, Y. Xu, X. Zhu, Y. Lu, Magn. Reson. Chem. 56 (2018) 73. https://doi.org/10.1002/mrc.4600
  30. H. Safardoust-Hojaghan, M. Salavati-Niasari, J. Cleaner Prod. 148 (2017) 31. https://doi.org/10.1016/j.jclepro.2017.01.169
  31. H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, M. Hassanpour, J. Mol. Liq. 241 (2017) 1114. https://doi.org/10.1016/j.molliq.2017.06.106
  32. H. Khojasteh, M. Salavati-Niasari, H. Safajou, H. Safardoust-Hojaghan, Diamond Relat. Mater. 79 (2017) 133. https://doi.org/10.1016/j.diamond.2017.09.011
  33. Q.-G. Zhang, N.-N. Wang, S.-L. Wang, Z.-W. Yu, J. Phys. Chem. B 115 (2011) 11127. https://doi.org/10.1021/jp204305g
  34. Y. Xu, W. Qian, Q. Gao, H. Li, Chem. Eng. Sci. 74 (2012) 211. https://doi.org/10.1016/j.ces.2012.03.003
  35. Y. Xu, H. Li, ChemPhysChem 16 (2015) 2861. https://doi.org/10.1002/cphc.201500381
  36. M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan, M.A. Hashim, J. Mol. Liq. 215 (2016) 98. https://doi.org/10.1016/j.molliq.2015.11.032
  37. A. Hayyan, F.S. Mjalli, I.M. AlNashef, T. Al-Wahaibi, Y.M. Al-Wahaibi, M.A. Hashim, Thermochim. Acta 541 (2012) 70. https://doi.org/10.1016/j.tca.2012.04.030
  38. P.K. Kilaru, P. Scovazzo, Ind. Eng. Chem. Res. 47 (2008) 910. https://doi.org/10.1021/ie070836b
  39. N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119 (2015) 10701. https://doi.org/10.1021/acs.jpcb.5b05433
  40. Y. Xu, J. $CO_2$ Util. 19 (2017) 1. https://doi.org/10.1016/j.jcou.2017.03.001
  41. J.-Z. Yang, X.-M. Lu, J.-S. Gui, W.-G. Xu, Green Chem. 6 (2004) 541. https://doi.org/10.1039/B412286K
  42. N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119 (2015) 10701. https://doi.org/10.1021/acs.jpcb.5b05433
  43. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, London, 1969.
  44. M. Deetlefs, K.R. Seddon, M. Shara, New J. Chem. 30 (2006) 317. https://doi.org/10.1039/b513451j
  45. P. Diaz-Rodriguez, J.C. Cancilla, N.V. Plechkova, G. Matute, K.R. Seddon, J.S. Torrecilla, Phys. Chem. Chem. Phys. 16 (2014) 128. https://doi.org/10.1039/C3CP53685H
  46. S. Zhang, X. Li, H. Chen, J. Wang, J. Zhang, M. Zhang, J. Chem. Eng. Data 49 (2004) 760. https://doi.org/10.1021/je030191w
  47. Q.-S. Liu, M. Yang, P.-P. Li, S.-S. Sun, U. Welz-Biermann, Z.-C. Tan, Q.-G. Zhang, J. Chem. Eng. Data 56 (2011) 4094. https://doi.org/10.1021/je200534b
  48. X. Wang, Y. Chi, T. Mu, J. Mol. Liq. 193 (2014) 262. https://doi.org/10.1016/j.molliq.2014.03.011
  49. A.P. Abbott, J.C. Barron, K.S. Ryder, D. Wilson, Chem. Eur. J. 13 (2007) 6495. https://doi.org/10.1002/chem.200601738
  50. Y. Xu, T. Li, C. Peng, H. Liu, Ind. Eng. Chem. Res. 54 (2015) 9038. https://doi.org/10.1021/acs.iecr.5b01325
  51. K. Fumino, E. Reichert, K. Wittler, R. Hempelmann, R. Ludwig, Angew. Chem. Int. Ed. 51 (2012) 6236. https://doi.org/10.1002/anie.201200508
  52. Y.-Z. Zheng, N.-N. Wang, J.-J. Luo, Y. Zhou, Z.-W. Yu, Phys. Chem. Chem. Phys.15 (2013) 18055. https://doi.org/10.1039/c3cp53356e
  53. L. Zhang, Z. Xu, Y. Wang, H. Li, J. Phys. Chem. B 112 (2008) 6411. https://doi.org/10.1021/jp8001349
  54. W.J. Shaw, J.C. Linehan, N.K. Szymczak, D.J. Heldebrant, C. Yonker, D.M. Camaioni, R.T. Baker, T. Autrey, Angew. Chem. Int. Ed. 47 (2008) 7493.
  55. M.A. Gebbie, A.M. Smith, H.A. Dobbs, G.G. Warr, X. Banquy, M. Valtiner, M.W. Rutland, J.N. Israelachvili, S. Perkin, R. Atkin, Chem. Commun. 53 (2017) 1214. https://doi.org/10.1039/C6CC08820A
  56. M.A. Gebbie, H.A. Dobbs, M. Valtiner, J.N. Israelachvili, PNAS 112 (2015) 7432. https://doi.org/10.1073/pnas.1508366112
  57. D. Yang, S. Zhang, D.E. Jiang, S. Dai, Phys. Chem. Chem. Phys. 20 (2018) 15168, doi:http://dx.doi.org/10.1039/C8CP02250J.
  58. R.A. Ando, L.J.A. Siqueira, F.C. Bazito, R.M. Torresi, P.S. Santos, J. Phys. Chem. B 111 (2007) 8717.

Cited by

  1. Recent Advances in Ionic Liquid-Mediated SO2 Capture vol.58, pp.31, 2019, https://doi.org/10.1021/acs.iecr.9b01959
  2. Quantum Chemistry Insight into the Interactions Between Deep Eutectic Solvents and SO2 vol.24, pp.16, 2018, https://doi.org/10.3390/molecules24162963
  3. A Global Model for the Estimation of Speeds of Sound in Deep Eutectic Solvents vol.25, pp.7, 2018, https://doi.org/10.3390/molecules25071626
  4. Secondary Agriculture Residues Pretreatment Using Deep Eutectic Solvents vol.12, pp.5, 2021, https://doi.org/10.1007/s12649-020-01176-1
  5. Highly efficient and reversible low-concentration SO2 absorption in flue gas using novel phosphonium-based deep eutectic solvents with different substituents vol.340, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.117228
  6. Tuning the CO2 absorption and physicochemical properties of K+ chelated dual functional ionic liquids by changing the structure of primary alkanolamine ligands vol.344, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.117983
  7. Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-85824-z