Acknowledgement
Supported by : National Natural Science Foundation of Zhejiang Province, National Natural Science Foundation of China, Shaoxing University
References
- A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 70-71 (2003).
- Q. Zhang, K.D.O. Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 41 (2012) 7108. https://doi.org/10.1039/c2cs35178a
- D. Yang, Y. Han, H. Qi, Y. Wang, S. Dai, ACS Sustain. Chem. Eng. 5 (2017) 6382. https://doi.org/10.1021/acssuschemeng.7b01554
- E. Ali, M.K. Hadj-Kali, S. Mulyono, I. Alnashef, Int. J. Greenh. Gas Control 47 (2016) 342. https://doi.org/10.1016/j.ijggc.2016.02.006
- L.F. Zubeir, C. Held, G. Sadowski, M.C. Kroon, J. Phys. Chem. B 120 (2016) 2300. https://doi.org/10.1021/acs.jpcb.5b07888
- K. Zhang, S. Ren, Y. Hou, W. Wu, J. Hazard. Mater. 324 (2017) 457. https://doi.org/10.1016/j.jhazmat.2016.11.012
- M.A. Farajzadeh, M.R.A. Mogaddam, B. Feriduni, RSC Adv. 6 (2016) 47990. https://doi.org/10.1039/C6RA04103E
- Y.R. Lee, K.H. Row, J. Ind. Eng. Chem. 39 (2016) 87. https://doi.org/10.1016/j.jiec.2016.05.014
- L. Duan, L.-L. Dou, L. Guo, P. Li, E.-H. Liu, ACS Sustain. Chem. Eng. 4 (2016) 2405. https://doi.org/10.1021/acssuschemeng.6b00091
- G. Li, C. Yan, B. Cao, J. Jiang, W. Zhao, J. Wang, T. Mu, Green Chem. 18 (2016) 2522. https://doi.org/10.1039/C5GC02691A
- A. Wang, P. Xing, X. Zheng, H. Cao, G. Yang, X. Zheng, RSC Adv. 5 (2015) 59022. https://doi.org/10.1039/C5RA08950F
- M.J. Rodriguez-Alvarez, C. Vidal, S. Schumacher, J. Borge, J. Garcia-Alvarez, Chem. Eur. J. 23 (2017) 3425. https://doi.org/10.1002/chem.201605303
- D. Carriazo, M.C. Serrano, M.C. Gutierrez, M.L. Ferrer, F. del Monte, Chem. Soc. Rev. 41 (2012) 4996. https://doi.org/10.1039/c2cs15353j
- C. Florindo, L. Romero, I. Rintoul, L. Branco, I.M. Marrucho, ACS Sustain. Chem. Eng 6 (2018) 3888. https://doi.org/10.1021/acssuschemeng.7b04235
- D.V. Wagle, H. Zhao, G.A. Baker, Acc. Chem. Res. 47 (2014) 2299. https://doi.org/10.1021/ar5000488
- E.L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114 (2014) 11060. https://doi.org/10.1021/cr300162p
- W. Guo, Y. Hou, S. Ren, S. Tian, W. Wu, J. Chem. Eng. Data 58 (2013) 866. https://doi.org/10.1021/je300997v
- M. Francisco, A. van den Bruinhorst, M.C. Kroon, Angew. Chem. Int. Ed. 52 (2013) 3074. https://doi.org/10.1002/anie.201207548
- H. Passos, D.J.P. Tavares, A.M. Ferreira, M.G. Freire, J.A.P. Coutinho, ACS Sustain. Chem. Eng. 4 (2016) 2881. https://doi.org/10.1021/acssuschemeng.6b00485
- J. Zhu, K. Yu, Y. Zhu, R. Zhu, F. Ye, N. Song, Y. Xu, J. Mol. Liq. 232 (2017) 182. https://doi.org/10.1016/j.molliq.2017.02.071
- H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26 (2015) 1518. https://doi.org/10.1007/s10854-014-2570-2
- H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, Trans. Nonferrous Met. Soc. China 26 (2016) 759. https://doi.org/10.1016/S1003-6326(16)64166-3
- H. Teymourinia, M. Salavati-Niasari, O.Amiri, M. Farangi, J. Mol. Liq. 251 (2018) 267. https://doi.org/10.1016/j.molliq.2017.12.059
- S. Ahmadian-Fard-Fini, M. Salavati-Niasari, H. Safardoust-Hojaghan, J. Mater. Sci.: Mater. Electron. 28 (2017) 16205. https://doi.org/10.1007/s10854-017-7522-1
- C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen, L. Qin, Appl. Catal. B: Environ. 220 (2018) 202. https://doi.org/10.1016/j.apcatb.2017.08.055
- C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, W. Xiong, Y. Deng, M. Wen, ACS Sustain. Chem. Eng. 6 (2018) 4174. https://doi.org/10.1021/acssuschemeng.7b04584
- G. Zeng, J. Wan, D. Huang, L. Hu, C. Huang, M. Cheng, W. Xue, X. Gong, R. Wan, D. Jiang, J. Hazard. Mater. 339 (2017) 354. https://doi.org/10.1016/j.jhazmat.2017.05.038
- L. Hu, J. Wan, G. Zeng, A. Chen, G. Chen, Z. Huang, K. He, M. Cheng, C. Zhou, W. Xiong, C. Lai, P. Xu, Environ. Sci.: Nano 4 (2017) 2018. https://doi.org/10.1039/C7EN00517B
- X. Tang, Y. Xu, X. Zhu, Y. Lu, Magn. Reson. Chem. 56 (2018) 73. https://doi.org/10.1002/mrc.4600
- H. Safardoust-Hojaghan, M. Salavati-Niasari, J. Cleaner Prod. 148 (2017) 31. https://doi.org/10.1016/j.jclepro.2017.01.169
- H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, M. Hassanpour, J. Mol. Liq. 241 (2017) 1114. https://doi.org/10.1016/j.molliq.2017.06.106
- H. Khojasteh, M. Salavati-Niasari, H. Safajou, H. Safardoust-Hojaghan, Diamond Relat. Mater. 79 (2017) 133. https://doi.org/10.1016/j.diamond.2017.09.011
- Q.-G. Zhang, N.-N. Wang, S.-L. Wang, Z.-W. Yu, J. Phys. Chem. B 115 (2011) 11127. https://doi.org/10.1021/jp204305g
- Y. Xu, W. Qian, Q. Gao, H. Li, Chem. Eng. Sci. 74 (2012) 211. https://doi.org/10.1016/j.ces.2012.03.003
- Y. Xu, H. Li, ChemPhysChem 16 (2015) 2861. https://doi.org/10.1002/cphc.201500381
- M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan, M.A. Hashim, J. Mol. Liq. 215 (2016) 98. https://doi.org/10.1016/j.molliq.2015.11.032
- A. Hayyan, F.S. Mjalli, I.M. AlNashef, T. Al-Wahaibi, Y.M. Al-Wahaibi, M.A. Hashim, Thermochim. Acta 541 (2012) 70. https://doi.org/10.1016/j.tca.2012.04.030
- P.K. Kilaru, P. Scovazzo, Ind. Eng. Chem. Res. 47 (2008) 910. https://doi.org/10.1021/ie070836b
- N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119 (2015) 10701. https://doi.org/10.1021/acs.jpcb.5b05433
-
Y. Xu, J.
$CO_2$ Util. 19 (2017) 1. https://doi.org/10.1016/j.jcou.2017.03.001 - J.-Z. Yang, X.-M. Lu, J.-S. Gui, W.-G. Xu, Green Chem. 6 (2004) 541. https://doi.org/10.1039/B412286K
- N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119 (2015) 10701. https://doi.org/10.1021/acs.jpcb.5b05433
- J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, London, 1969.
- M. Deetlefs, K.R. Seddon, M. Shara, New J. Chem. 30 (2006) 317. https://doi.org/10.1039/b513451j
- P. Diaz-Rodriguez, J.C. Cancilla, N.V. Plechkova, G. Matute, K.R. Seddon, J.S. Torrecilla, Phys. Chem. Chem. Phys. 16 (2014) 128. https://doi.org/10.1039/C3CP53685H
- S. Zhang, X. Li, H. Chen, J. Wang, J. Zhang, M. Zhang, J. Chem. Eng. Data 49 (2004) 760. https://doi.org/10.1021/je030191w
- Q.-S. Liu, M. Yang, P.-P. Li, S.-S. Sun, U. Welz-Biermann, Z.-C. Tan, Q.-G. Zhang, J. Chem. Eng. Data 56 (2011) 4094. https://doi.org/10.1021/je200534b
- X. Wang, Y. Chi, T. Mu, J. Mol. Liq. 193 (2014) 262. https://doi.org/10.1016/j.molliq.2014.03.011
- A.P. Abbott, J.C. Barron, K.S. Ryder, D. Wilson, Chem. Eur. J. 13 (2007) 6495. https://doi.org/10.1002/chem.200601738
- Y. Xu, T. Li, C. Peng, H. Liu, Ind. Eng. Chem. Res. 54 (2015) 9038. https://doi.org/10.1021/acs.iecr.5b01325
- K. Fumino, E. Reichert, K. Wittler, R. Hempelmann, R. Ludwig, Angew. Chem. Int. Ed. 51 (2012) 6236. https://doi.org/10.1002/anie.201200508
- Y.-Z. Zheng, N.-N. Wang, J.-J. Luo, Y. Zhou, Z.-W. Yu, Phys. Chem. Chem. Phys.15 (2013) 18055. https://doi.org/10.1039/c3cp53356e
- L. Zhang, Z. Xu, Y. Wang, H. Li, J. Phys. Chem. B 112 (2008) 6411. https://doi.org/10.1021/jp8001349
- W.J. Shaw, J.C. Linehan, N.K. Szymczak, D.J. Heldebrant, C. Yonker, D.M. Camaioni, R.T. Baker, T. Autrey, Angew. Chem. Int. Ed. 47 (2008) 7493.
- M.A. Gebbie, A.M. Smith, H.A. Dobbs, G.G. Warr, X. Banquy, M. Valtiner, M.W. Rutland, J.N. Israelachvili, S. Perkin, R. Atkin, Chem. Commun. 53 (2017) 1214. https://doi.org/10.1039/C6CC08820A
- M.A. Gebbie, H.A. Dobbs, M. Valtiner, J.N. Israelachvili, PNAS 112 (2015) 7432. https://doi.org/10.1073/pnas.1508366112
- D. Yang, S. Zhang, D.E. Jiang, S. Dai, Phys. Chem. Chem. Phys. 20 (2018) 15168, doi:http://dx.doi.org/10.1039/C8CP02250J.
- R.A. Ando, L.J.A. Siqueira, F.C. Bazito, R.M. Torresi, P.S. Santos, J. Phys. Chem. B 111 (2007) 8717.
Cited by
- Recent Advances in Ionic Liquid-Mediated SO2 Capture vol.58, pp.31, 2019, https://doi.org/10.1021/acs.iecr.9b01959
- Quantum Chemistry Insight into the Interactions Between Deep Eutectic Solvents and SO2 vol.24, pp.16, 2018, https://doi.org/10.3390/molecules24162963
- A Global Model for the Estimation of Speeds of Sound in Deep Eutectic Solvents vol.25, pp.7, 2018, https://doi.org/10.3390/molecules25071626
- Secondary Agriculture Residues Pretreatment Using Deep Eutectic Solvents vol.12, pp.5, 2021, https://doi.org/10.1007/s12649-020-01176-1
- Highly efficient and reversible low-concentration SO2 absorption in flue gas using novel phosphonium-based deep eutectic solvents with different substituents vol.340, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.117228
- Tuning the CO2 absorption and physicochemical properties of K+ chelated dual functional ionic liquids by changing the structure of primary alkanolamine ligands vol.344, pp.None, 2018, https://doi.org/10.1016/j.molliq.2021.117983
- Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-85824-z