• Title/Summary/Keyword: N-FINDR

Search Result 6, Processing Time 0.015 seconds

A Modified Iterative N-FINDR Algorithm for Fully Automatic Extraction of Endmembers from Hyperspectral Imagery (초분광 영상의 endmember 자동 추출을 위한 수정된 Iterative N-FINDR 기법 개발)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.565-572
    • /
    • 2011
  • A modified iterative N-FINDR algorithm is developed for fully automatic extraction of endmembers from hyperspectral image data. This algorithm exploits the advantages of iterative NFINDR technique and Iterative Error analysis technique. The experiments using a simulated hyperspectral image data shows that the optimum number of endmembers can be automatically decided. The extracted endmembers and finally generated abundance fraction maps show the potentialities of the proposed algorithm. More studies are needed for verification of the applicability of the algorithm to the real hyperspectral image data where the absence of pure pixels is common.

A Study on Fast Extraction of Endmembers from Hyperspectral Image Data (초분광 영상자료의 Endmember 추출 속도 향상에 관한 연구)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.347-355
    • /
    • 2012
  • A fast algorithm for endmember extraction is proposed in this study which extracts min. and max. pixels from each band after MNF transform as candidate pixels for endmember. This method finds endmembers not from the entire image pixels but only from the previously extracted candidate pixels. The experimental results by N-FINDR using a simulated hyperspectral image data and AVIRIS Cuprite image data showed that the proposed fast algorithm extracts the same endmembers with the conventional methods. More studies on the effect of noise and more adaptive criteria in extracting candidate pixels are expected to increase the usability of this method for more fast and efficient analysis of hyperspectral image data.

Applicability Evaluation of Endmember Extraction Algorithms on the AISA Hyperspectral Images (AISA 초분광 영상에 대한 Endmember 추출 알고리즘의 적용성 분석)

  • Song, Ahram;Chang, Anjin;Kim, Yong-Il;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.527-535
    • /
    • 2013
  • Extraction of correct endmembers is prerequisite to successful spectral unmixing analysis. Various endmember extraction algorithms have been proposed and most experiments based on endmember extraction have used synthetic image and AVIRIS image data. However, these data can present different characteristics comparing with hyperspectral images acquired from real domestic environment. For this study, a test-bed was constructed for analysing the difference on diverse substances and sizes in domestic areas, and AISA hyperspectral imagery acquired from the test-bed was tested with two well-known endmember extraction algorithms: IEA, and N-FINDR. The results indicated that two different algorithms depended on the number of endmembers and material types in the test-bed. Therefore, optimized number of endmembers and characteristics of materials in test-bed site should be considered for the effective application of endmember extraction algorithms.

Change Detection Using Spectral Unmixing and IEA(Iterative Error Analysis) for Hyperspectral Images (IEA(Iterative Error Analysis)와 분광혼합분석기법을 이용한 초분광영상의 변화탐지)

  • Song, Ahram;Choi, Jaewan;Chang, Anjin;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.361-370
    • /
    • 2015
  • Various algorithms such as Chronochrome(CC), Principle Component Analysis(PCA), and spectral unmixing have been studied for hyperspectral change detection. Change detection by spectral unmixing offers useful information on the nature of the change compared to the other change detection methods which provide only the locations of changes in the scene. However, hyperspectral change detection by spectral unmixing is still in an early stage. This research proposed a new approach to extract endmembers, which have identical properties in temporally different images, by Iterative Error Analysis (IEA) and Spectral Angle Mapper(SAM). The change map obtained from the difference of abundance efficiently showed the changed pixels. Simulated images generated from Compact Airborne Spectrographic Imager (CASI) and Hyperion were used for change detection, and the experimental results showed that the proposed method performed better than CC, PCA, and spectral unmixing using N-FINDR. The proposed method has the advantage of automatically extracting endmembers without prior information, and it could be applicable for the real images composed of many materials.

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.