DOI QR코드

DOI QR Code

Applicability Evaluation of Endmember Extraction Algorithms on the AISA Hyperspectral Images

AISA 초분광 영상에 대한 Endmember 추출 알고리즘의 적용성 분석

  • Song, Ahram (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Chang, Anjin (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Yong-Il (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Choi, Jaewan (School of Civil Engineering, Chungbuk National University)
  • 송아람 (서울대학교 건설환경공학부) ;
  • 장안진 (서울대학교 건설환경공학부) ;
  • 김용일 (서울대학교 건설환경공학부) ;
  • 최재완 (충북대학교 토목공학과)
  • Received : 2013.09.05
  • Accepted : 2013.10.18
  • Published : 2013.10.31

Abstract

Extraction of correct endmembers is prerequisite to successful spectral unmixing analysis. Various endmember extraction algorithms have been proposed and most experiments based on endmember extraction have used synthetic image and AVIRIS image data. However, these data can present different characteristics comparing with hyperspectral images acquired from real domestic environment. For this study, a test-bed was constructed for analysing the difference on diverse substances and sizes in domestic areas, and AISA hyperspectral imagery acquired from the test-bed was tested with two well-known endmember extraction algorithms: IEA, and N-FINDR. The results indicated that two different algorithms depended on the number of endmembers and material types in the test-bed. Therefore, optimized number of endmembers and characteristics of materials in test-bed site should be considered for the effective application of endmember extraction algorithms.

분광혼합분석을 효과적으로 수행하기 위한 정확한 endmember의 추출은 반드시 선행되어야할 조건이며, 이를 위한 다양한 endmember 추출 알고리즘들이 개발되었다. 이러한 endmember 추출 알고리즘의 개발 및 적용성을 평가하기 위한 기존의 연구는 대부분 모의 초분광 영상 또는 AVIRIS 영상을 대상으로 진행되었다. 그러나 이러한 영상 자료는 실제 국내에서 획득되고 활용할 수 있는 초분광 영상과 차이를 보일 수 있다. 따라서 본 연구에서는 국내에서 취득된 AISA 초분광 영상에 대하여 대표적인 endmember추출 알고리즘을 사용하고, 그 적용성을 평가하였다. 물질의 종류 및 크기에 따른 차이를 분석하기 위하여 인공적으로 설계한 테스트베드를 구축하고, AISA 초분광 영상을 취득하여 실험 자료로 이용하였다. 실험결과, 테스트베드 내 물질과 초기 입력값에 따라 알고리즘별로 endmember 추출결과가 다르게 나타났다. 따라서 효과적인 endmember 추출 알고리즘을 적용하기 위해서는 영상을 구성하는 테스트베드 내 물질의 특성 및 최적의 endmember의 개수를 고려해야 할 것이다.

Keywords

References

  1. Chang, C.-I., 1999, Spectral Information Divergence for Hyperspectral Image Analysis, International Geoscience and Remote Sensing Symposium. Hamburg, Germany, June 28-July 2, pp.509-511.
  2. Chang, C.-I., 2000, An Information-theoretic Approach to Spectral Variability Similarity, and Discrimination for Hyperspectral Image Analysis, IEEE Transaction on Information Theory, 46(5): 1927-1932. https://doi.org/10.1109/18.857802
  3. Chang, A., Y. Kim, S. Choi, D. Han, J. Choi, Y. Kim, Y. Han, H. Park, B. Wang, and H. Lim, 2013, Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing, Korean Journal of Remote sensing, 29(2): 161-172. https://doi.org/10.7780/kjrs.2013.29.2.1
  4. Du, H., C.-I., Chang, H. Ren, C.-C. Chang, J.O. Jensen, and F.M. D'Amico, 2004, New Hyperspectral Discrimination Measure for Spectral Characterization, Optical Engineering, 43(8): 1777-1786. https://doi.org/10.1117/1.1766301
  5. Fano, R.M., 1961, Transmission of Information: A Statistical Theory of Communication, New York: Wiley.
  6. Goetz, A.F.H., G. Vane, G. Solomon, J. E, and B.N. Rock, 1985, Imaging Spectrometry for Earth Remote Sensing, Science, 228(4704): 1147-1153. https://doi.org/10.1126/science.228.4704.1147
  7. Gruninger, J., A.J. Ratkowski, and M.l.L. Hokeb, 2004, The Sequential Maximum Angle Convex Cone(SMACC) Endmember Model, Proceedings SPIE, Algorithms for Multispectral and Hyperspectral and Ultraspectral Imagery, Orlando, FL 5425: 1-14.
  8. Harsanyi, J.C., and C.-I. Chang, 1994, Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach, IEEE Transactions on Geoscience and Remote Sensing, 32(4): 779-785 https://doi.org/10.1109/36.298007
  9. Jeong, S., C. Park, and S. Kim, Land Cover Classification of The Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data, Korean Journal of Remote sensing, 22(6): 553-563. https://doi.org/10.7780/kjrs.2006.22.6.553
  10. Kim, K., 2011, A Modified Iterative N-FINDR Algorithm for Fully Automatic Extraction of Endmembers from Hyperspectral Imagery, Korean Journal of Remote Sensing, 27(5): 566-572. https://doi.org/10.7780/kjrs.2011.27.5.565
  11. Kim, K., 2012, A Study on Fast Extraction of Endmembers from Hyperspectral Image Data, Korean Journal of Remote Sensing, 28(4): 347-355. https://doi.org/10.7780/kjrs.2012.28.4.1
  12. Kim, S., K. Lee, J. Ma and M. K, 2005, Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications, Korean Journal of Remote Sensing, 21(4): 341-369. https://doi.org/10.7780/kjrs.2005.21.4.341
  13. Lee, J. and K. Lee, 2003, Analysis of Forest Cover Information Extracted by Spectral Mixture Analysis, Korean Journal of Remote Sensing, 19(6): 411-419. https://doi.org/10.7780/kjrs.2003.19.6.411
  14. Li, H., and L. Zhang, 2011, A Hybrid Automatic Endmembmer Extraction Algorithm Based on Local Window, IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4223-4238. https://doi.org/10.1109/TGRS.2011.2162098
  15. Neville, R.A., K. Staennz, T. Szeredi, J. Lefebvre, and P. Hauff, 1999, Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration, Proceedings 21st Canada Symposium on Remote Sensing, Ottawa, ON, Canada, 21-24.
  16. Plaza, A., P. Martinez, R. Perez, and J. Plaza, 2004, A Quantitative and Comparative Analysis of Endmemeber Extraction Algorithms from Hyperspectral Data, IEEE Transactions on Geoscience and Remote Sensing, 42(3): 650-663. https://doi.org/10.1109/TGRS.2003.820314
  17. Plaza, A. and C.-I. Chang., 2005, An Improved NFINDR Algorithm in Implementation, Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, SPIE Symposium on Defense and Security, SPIE, Orlando, Florida, 5806: 298-306.
  18. Plaza. A. and C.-I. Chang., 2006, Impact of Initialization on Design of Endmember Extraction Algorithm, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3397-3407. https://doi.org/10.1109/TGRS.2006.879538
  19. Shin, J. and K. Lee, 2012, Comparative Analysis of Target Detection Algorithms in Hyperspectral Image, Korean Journal of Remote Sensing, 28(4): 369-392. https://doi.org/10.7780/kjrs.2012.28.4.3
  20. Shin, J., S. Kim, J, Yoon, T. Kim and K. Lee, 2006, Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area, Korean Journal of Remote Sensing, 22(6): 565-574. https://doi.org/10.7780/kjrs.2006.22.6.565
  21. Van der Meer, F., 2006, The Effectiveness of Spectral Similarity Measures for The Analysis of Hyperspectral Imagery, International Journal of Applied Earth Observation and Geoinformation, 8(1): 3-17. https://doi.org/10.1016/j.jag.2005.06.001
  22. Winter, M.E., 1999, N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data, Proceedings SPIE, 3753:266-275.

Cited by

  1. Spectral Mixture Analysis Using Modified IEA Algorithm for Forest Classification vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.5