• Title/Summary/Keyword: Multithreaded

Search Result 42, Processing Time 0.03 seconds

A Register-Based Caching Technique for the Advanced Performance of Multithreaded Models (다중스레드 모델의 성능 향상을 위한 가용 레지스터 기반 캐슁 기법)

  • Go, Hun-Jun;Gwon, Yeong-Pil;Yu, Won-Hui
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.107-116
    • /
    • 2001
  • A multithreaded model is a hybrid one which combines locality of execution of the von Neumann model with asynchronous data availability and implicit parallelism of the dataflow model. Much researches that have been made toward the advanced performance of multithreaded models are about the cache memory which have been proved to be efficient in the von Neumann model. To use an instruction cache or operand cache, the multithreaded models must have cache memories. If cache memories are added to the multithreaded model, they may have the disadvantage of high implementation cost in the mode. To solve these problems, we did not add cache memory but applied the method of executing the caching by using available registers of the multithreaded models. The available register-based caching method is one that use the registers which are not used on the execution of threads. It may accomplish the same effect as the cache memory. The multithreaded models can compute the number of available registers to be used during the process of the register optimization, and therefore this method can be easily applied on the models. By applying this method, we can also remove the access conflict and the bottleneck of frame memories. When we applied the proposed available register-based caching method, we found that there was an improved performance of the multithreaded model. Also, when the available-register-based caching method is compared with the cache based caching method, we found that there was the almost same execution overhead.

  • PDF

Evaluation Of The Content-Based Packet Scheduling Policies On The Multithreaded Multiprocessor Network System

  • Yim Kangbin
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.39-41
    • /
    • 2004
  • In this paper, I propose a thread scheduling policy for faster packet processing on the network processors with multithreaded multiprocessor architecture. To implement the proposed policy, I derived several basic parameters related to the thread scheduling and included a new parameter representing the packet contents and the features of the multithreaded architecture. Through the empirical study using a network processor, I proved the proposed scheduling ploicy provides better throughput and load balancing compared to the generally used thread scheduling policy.

  • PDF

A Process Algebra-Based Detection Model for Multithreaded Programs in Communication System

  • Wang, Tao;Shen, Limin;Ma, Chuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.965-983
    • /
    • 2014
  • Concurrent behaviors of multithreaded programs cannot be described effectively by automata-based models. Thus, concurrent program intrusion attempts cannot be detected. To address this problem, we proposed the process algebra-based detection model for multithreaded programs (PADMP). We generate process expressions by static binary code analysis. We then add concurrency operators to process expressions and propose a model construction algorithm based on process algebra. We also present a definition of process equivalence and behavior detection rules. Experiments demonstrate that the proposed method can accurately detect errors in multithreaded programs and has linear space-time complexity. The proposed method provides effective support for concurrent behavior modeling and detection.

Robust Multithreaded Object Tracker through Occlusions for Spatial Augmented Reality

  • Lee, Ahyun;Jang, Insung
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.246-256
    • /
    • 2018
  • A spatial augmented reality (SAR) system enables a virtual image to be projected onto the surface of a real-world object and the user to intuitively control the image using a tangible interface. However, occlusions frequently occur, such as a sudden change in the lighting environment or the generation of obstacles. We propose a robust object tracker based on a multithreaded system, which can track an object robustly through occlusions. Our multithreaded tracker is divided into two threads: the detection thread detects distinctive features in a frame-to-frame manner, and the tracking thread tracks features periodically using an optical-flow-based tracking method. Consequently, although the speed of the detection thread is considerably slow, we achieve real-time performance owing to the multithreaded configuration. Moreover, the proposed outlier filtering automatically updates a random sample consensus distance threshold for eliminating outliers according to environmental changes. Experimental results show that our approach tracks an object robustly in real-time in an SAR environment where there are frequent occlusions occurring from augmented projection images.

Multi-thread Scheduling for the Network Processor (네트워크 프로세서를 위한 다중 쓰레드 스케줄링)

  • Yim, Kang-Bin;Park, Jun-Ku;Jung, Gi-Hyun;Choi, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.337-344
    • /
    • 2004
  • In this paper, we propose a thread scheduling algorithm for faster packet processing on the network processors with multithreaded multiprocessor architecture. To implement the proposed algorithm. we derived several basic parameters related to the thread scheduling and included a new parameter representing the packet contents and the multithreaded architecture. Through the empirical study using a simulator, we proved the proposed scheduling algorithm provides better throughput and load balancing compared to the general thread scheduling algorithm.

The Efficient Execution of Functional Language Loops on the Multithreaded Architectures (다중스레드 구조에서 함수 언어 루프의 효과적 실행)

  • Ha, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.962-970
    • /
    • 2000
  • Multithreading is attractive in that it can tolerate memory latency and synchronization by effectively overlapping communication with computation. While several compiler techniques have been developed to produce multithreaded codes from functional languages programs, there still remains a lot of works to implement loops effectively. Executing lops in a style of multithreading usually causes some overheads, which can reduce severely the effect of multirheading. This paper suggests several methods in terms of architectures or compilers which can optimize loop execution by multithreading. We then simulate and analyze them for the matrix multiplication program.

  • PDF

A Multithreaded Implementation of HEVC Intra Prediction Algorithm for a Photovoltaic Monitoring System

  • Choi, Yung-Ho;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.256-261
    • /
    • 2012
  • Recently, many photovoltaic systems (PV systems) including solar parks and PV farms have been built to prepare for the post fossil fuel era. To investigate the degradation process of the PV systems and thus, efficiently operate PV systems, there is a need to visually monitor PV systems in the range of infrared ray through the Internet. For efficient visual monitoring, this paper explores a multithreaded implementation of a recently developed HEVC standard whose compression efficiency is almost two times higher than H.264. For an efficient parallel implementation under a meshbased 64 multicore system, this work takes into account various design choices which can solve potential problems of a two-dimensional interconnects-based 64 multicore system. These problems may have not occurred in a small-scale multicore system based on a simple bus network. Through extensive evaluation, this paper shows that, for an efficient multithreaded implementation of HEVC intra prediction in a mesh-based multicore system, much effort needs to be made to optimize communications among processing cores. Thus, this work provides three design choices regarding communications, i.e., main thread core location, cache home policy, and maximum coding unit size. These design choices are shown to improve the overall parallel performance of the HEVC intra prediction algorithm by up to 42%, achieving a 7 times higher speed-up.

A Thread Monitoring System for Java (Java 언어를 위한 쓰레드 모니터링 시스템)

  • Moon Se-Won;Chang Byeong-Mo
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.205-210
    • /
    • 2006
  • To assist developing robust multithreaded software, we develop a thread monitoring system for multithreaded Java programs, which can trace or monitor running threads and synchronization. We design a monitoring system which has options to select interesting threads and synchronizations. Using this tool, programmers can monitor only interesting threads and synchronization in more details by selecting options. It also provides profile information after execution, which summarizes behavior of running threads and synchronizations during execution. We implement the system based on code inlining, and presents some experimental results.

Design and Implementation of a Massively Parallel Multithreaded Architecture: DAVRID

  • Sangho Ha;Kim, Junghwan;Park, Eunha;Yoonhee Hah;Sangyong Han;Daejoon Hwang;Kim, Heunghwan;Seungho Cho
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.15-26
    • /
    • 1996
  • MPAs(Massively Parallel Architectures) should address two fundamental issues for scalability: synchronization and communication latency. Dataflow architecture faces problems of excessive synchronization overhead and inefficient execution of sequential programs while they offer the ability to exploit massive parallelism inherent in programs. In contrast, MPAs based on von Neumann computational model may suffer from inefficient synchronization mechanism and communication latency. DAVRID (DAtaflow/Von Neumann RISC hybrID) is a massively parallel multithreaded architecture which takes advantages of von Neumann and dataflow models. It has good single thread performance as well as tolerates synchronization and communication latency. In this paper, we describe the DAVRID architecture in detail and evaluate its performance through simulation runs over several benchmarks.

  • PDF

A Multithreaded Architecture for the Efficient Execution of Vector Computations (벡타 연산을 효율적으로 수행하기 위한 다중 스레드 구조)

  • Yun, Seong-Dae;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.974-984
    • /
    • 1995
  • This paper presents a design of a high performance MULVEC (MULtithreaded architecture for the VEctor Computations), as a building block of massively parallel Processing systems. The MULVEC comes from the synthesis of the dataflow model and the extant super sclar RISC microprocesso r. The MULVEC reduces, using status fields, the number of synchronizations in the case of repeated vector computations within the same thread segment, and also reduces the amount of the context switching, network traffic, etc. After be nchmark programs are simulated on the SPARC station 20(super scalar RISC microprocessor)the performance (execution time of programs and the utilization of processors) of MULVEC and the performance(execution time of a program) of *Taccording the different numbers of node are analyzed. We observed that the execution time of the program in MULVEC is faster than that in * T about 1-2 times according the number of nodes and the number of the repetitions of the loop.

  • PDF