
Copyright 2011 KIEEME. All rights reserved. http://www.transeem.org256

† Author to whom all correspondence should be addressed:
E-mail: hkahn@konkuk.ac.kr

Copyright 2012 KIEEME. All rights reserved.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial
License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

A Multithreaded Implementation of HEVC Intra
Prediction Algorithm for a Photovoltaic Monitoring
System

Yungho Choi and Hyungkeun Ahn

Department of Electrical Engineering, Konkuk University, Seoul 143-701, Korea

Received August 29, 2012; Accepted September 11, 2012

Recently, many photovoltaic systems (PV systems) including solar parks and PV farms have been built to prepare
for the post fossil fuel era. To investigate the degradation process of the PV systems and thus, efficiently operate PV
systems, there is a need to visually monitor PV systems in the range of infrared ray through the Internet. For efficient
visual monitoring, this paper explores a multithreaded implementation of a recently developed HEVC standard whose
compression efficiency is almost two times higher than H.264. For an efficient parallel implementation under a mesh-
based 64 multicore system, this work takes into account various design choices which can solve potential problems of
a two-dimensional interconnects-based 64 multicore system. These problems may have not occurred in a small-scale
multicore system based on a simple bus network. Through extensive evaluation, this paper shows that, for an efficient
multithreaded implementation of HEVC intra prediction in a mesh-based multicore system, much effort needs to be
made to optimize communications among processing cores. Thus, this work provides three design choices regarding
communications, i.e., main thread core location, cache home policy, and maximum coding unit size. These design
choices are shown to improve the overall parallel performance of the HEVC intra prediction algorithm by up to 42%,
achieving a 7 times higher speed-up.

Keywords: 2D interconnects, Multithread, Photovoltaic, Monitoring, Intra prediction

Regular Paper

TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS

Vol. 13, No. 5, pp. 256-261, October 25, 2012

1. INTRODUCTION

A photovoltaic system (PV system) is known to be a promis-
ing clean energy. Therefore, many PV systems including solar
parks and PV farms have been built to prepare for the post fossil
fuel era. To trace the degradation process of the PV systems and
thus, to efficiently operate PV systems, there is a need to visually
monitor PV systems through the Internet [1-3].

In such visual monitoring systems, video compression tech-
nologies enable to store and transmit video data with fewer re-
sources [4]. One of the compression technologies is HEVC (high

efficiency video coding), which is a new draft of a video com-
pression technology. To enhance compression efficiency, HEVC
provides larger and more variable coding block sizes, adaptive
loop filter, larger transform kernel size, etc. Despite its high
compression efficiency, due to its high coding complexity and
dependencies among tools, it suffers from a long coding time.
This problem might be aggravated because each tool of HEVC
has been selected based on its single thread performance.

In other words, when the suitability of algorithms for HEVC is
examined, their performances are evaluated under an assump-
tion that the single thread performance of processors will be
continuously increased and thus, can support their complicated
tools. This is not true because the single thread performance
of commercial processors has been at a standstill for a while,
migrating into multicore processors. Especially, the trend of pro-
cessor architectures lies in containing more and more processor
cores and connecting them together using an interconnection
network with high connectivity instead of a bus with low con-

pISSN: 1229-7607 eISSN: 2092-7592
DOI: http://dx.doi.org/10.4313/TEEM.2012.13.5.256

257Trans. Electr. Electron. Mater. 13(5) 256 (2012): Y. Choi et al.

nectivity. However, in terms of behaviors, the architecture having
many processing cores and an interconnection network with
high connectivity can be significantly different from the one hav-
ing a small number of cores using a bus. This is because more
cores and higher connectivity may cause an unexpected commu-
nication behavior including traffic congestion, synchronization
competition and so on. Therefore, in implementing a parallel-
ized HEVC for multicore processing systems, it is very important
to understand behaviors regarding the interconnection network
of a many-core system architecture and to exploit the behaviors
efficiently. This is the key motivation of this work.

Generally, there are two ways to parallelize HEVC in multi-
core systems. One is message passing-based programming, e.g.,
MPI library, and the other is shared memory programming, e.g.,
pthread library. Message passing-based programming utilizes
messages to enable communications among processing cores.
This programming model requires delicacy in partition and a
refined communication strategy, taking a considerable time in
parallel implementation. In shared memory programming, mul-
tiprocessing cores share memory for communications. This pro-
gramming style is generally easy to parallelize a given algorithm
because this programming style is similar to a general sequential
programming model except for maintaining critical memory
sections, which require atomic operations. Additionally, a shared
memory programming model accommodates cache protocol to
make a complicated communication process among cores more
transparent to programmers. Due to the easiness in program-
ming, therefore, this paper parallelizes HEVC intra prediction al-
gorithms in a shared memory and multithreaded programming
model, utilizing a pthread library.

The contributions of this paper are summarized as follows. (1)
HEVC intra prediction algorithms are parallelized. (2) The effects
of multicore system architectures on the multithreaded perfor-
mance of the HEVC intra prediction algorithm are analyzed. (3) A
good multicore system implementation exploiting the explored
architecture characteristics of a multicore system, is provided
and its performance is evaluated. For (1), a wavefront scheme
[5] is modified to parallelize HEVC intra prediction algorithms,
which breaks off dependency chains among coding blocks and
enables the execution of an intra-prediction algorithm concur-
rently in many cores. For (2) and (3), parallelized HEVC intra pre-
diction algorithms are ported into a multicore system consisting
of 64 processing cores. Through performance evaluations, this
work will provide insight on how multicore system architectures
affect the performance of multithreaded HEVC intra prediction
algorithms. This insight will be helpful in implementing more ef-
fectively parallelized algorithms for HEVC.

The remainder of this paper is organized as follows: Section
2 briefly summarizes intra prediction algorithms to be explored
and their parallelization. Section 3 describes how to port intra
prediction algorithms into a multicore system for their parallel
processing performance evaluations. In Section 4, a performance
evaluation on algorithms is given. Lastly, Section 5 will conclude
the study.

2. RELATED WORKS

2.1 HEVC intra prediction algorithm

The intra prediction algorithm for HEVC reduces image re-
dundancy by predicting image pixel values based on neighbor-
ing pixels previously decoded as shown in Fig. 1(a). Since HEVC
provides larger prediction units, HEVC employs more intra pre-
diction modes than previous coding standards such as MPEG2,
MPEG4, H.264. As shown in Fig. 1(c), in HEVC, 35 intra predic-

tion modes are defined: intra_DC, intra_planar, intra_fromLuma,
and 33 angular predictions [6,7]. The intra_DC uses the average
pixel value of neighboring pixels to predict the image pixels for
the underlying prediction unit. This works well when an image
is a non-moving background image in a picture and does not
have strong edges and textures. The intra_planar prediction uti-
lizes interpolations to predict image pixels as shown in Fig. 1(b).
This prediction better predicts image textures coming from the
right side and the bottom side of the prediction unit. Addition-
ally, HEVC provides 33 different angular direction predictions in
Fig. 1(c). This increases the number of angular directions by 4
times compared to H.264, resulting in a better texture prediction.
However, despite its higher compression efficiency of HEVC in-
tra predictions, HEVC might suffer from a long coding time due
to its complicated intra predictions. Furthermore, because intra
predictions utilize neighboring pixels previously decoded, result-
ing in data dependency chains, the parallelization of HEVC intra
predictions might not be easy. To resolve this problem, the next
subsection describes the way to remove data dependency chains
and thus, to enable the parallelization of intra predictions.

2.2 Parallelization of HEVC intra prediction
algorithm

In order to evaluate the parallel performance of each intra
prediction algorithm, this work ports intra prediction algorithms
into a multicore system consisting of 64 processing cores [9]. As
shown in Fig. 2, these processing cores are connected using a
mesh network. The multicore system provides on-chip caches,
in which local caching is allowed and thus, remote data accesses
are expensive. This might decrease the parallel processing per-

Fig. 1. HEVC intra prediction (a) intra prediction, (b) intra_planar
prediction mode, and (c) intra prediction mode directions.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

 0 : Intra_Planar
 1 : Intra_DC
 35: Intra_FromLuma

(a)

(b)

(c)

Trans. Electr. Electron. Mater. 13(5) 256 (2012): Y. Choi et al.258

formance of an intra prediction algorithm by accessing remote
data more frequently. Each core in the multicore system has a 3
-way VLIW pipeline for instruction level parallelism. Addition-
ally, this system provides 4 DDR2 controllers which mitigate the
bottleneck problem of off-chip memory accesses by increasing
off-chip memory bandwidth.

To parallelize intra prediction algorithms, a wavefront-style
coding block encoding order [5] is employed. In an intra predic-
tion, spatially neighboring pixels previously encoded are needed
to predict macroblock pixel values. However, if coding blocks are
encoded in a regular encoding order shown in Fig. 3(a), the cod-
ing block level parallelism cannot be achieved. For example, in
Fig. 2(a), neighboring coding block 10 and 11 cannot be intra-
predicted concurrently because, to predict coding block 11, cod-
ing block 10’s reconstructed picture image is required, which
is available only after coding block 10 is encoded. A wavefront-
style coding block encoding order [5] can resolve this problem by
changing the encoding order as shown in Fig. 3(b) and thus, en-
abling a coding block level parallelism. For example, in Fig. 3(b),
when coding block-4s are encoded, the reconstructed pictures of
coding block-3s are available because they are previously encod-
ed. In the next section, using a multicore system and a wavefront-
style coding block encoding order, a multithread performance
evaluation of the HEVC intra prediction algorithm is given to pro-
vide an insight on how multicore system architectures affect the
performance of multithreaded HEVC intra prediction algorithms.

3. PARALLEL IMPLEMENTATION OF AN
-INTRA PREDICTION ALGORITHM

To efficiently implement the HEVC intra prediction algorithm,
job partitioning for multicores is very important because this
partitioning strongly affects communication among processing
cores by determining network traffic, cache hit ratio, communi-

cation latency and so on. Therefore, this work takes into account
the following implementation issues, which are closely associ-
ated with the parallel job partitioning task: (1) main thread core
location, (2) cache home policy, and (3) maximum coding unit
size. Each issue is introduced in the following subsection.

3.1 Main thread core location

The main thread in a parallel program is generally called the
thread that starts the given parallel program, assigns incoming
data to processing cores, maintains common data structures,
forks and synchronizes child threads, and so on. Because the
main thread needs to communicate with the child threads fre-
quently, the location of the core executing the main thread, i.e.,
main thread core, is very important. Figure 4 presents an ex-
ample of a thread core configuration. In this figure, each small
square box represents a processing core and thus, 64 processing
cores comprise a multicore system. As shown in the figure, if
the main thread core is located in the upmost and the rightmost
coordinates, the communication between the main thread core
and the child thread cores might suffer since many communica-
tion paths between the main thread core and child thread cores
are overlapped and thus, can cause heavy traffic congestion.
However, if the main thread can be migrated into the orange-
color core block in the figure, such communication path overlaps
will be minimized, resulting in less congestion and less com-
munication latency. The improved communication performance
will increase the overall parallel performance of the HEVC intra
prediction algorithm. Consequently, the location of the main
thread core needs to be carefully selected so that the average dis-
tance between the main thread core and the child thread cores
can be minimized in addition to the communication path over-
laps also being minimized. This effect of the main thread core
location will be evaluated in Section 4.1.

3.2 Cache home policy

The multicore system [9] does not provide a remote cache
coherence protocol where remote data cannot be cached locally
and therefore, to access remote data, requests must always go
to remote home nodes. This significantly hampers parallel per-
formance. Hence, to increase parallel performance, such remote
data accesses need to be minimized. For this, this work evalu-
ates two cache configurations: (1) no local cache and (2) local
cache. In case of a no local cache configuration, data for child
threads are not carefully and locally arranged and therefore,
data required by threads are frequently brought in from remote
processing cores, increasing traffic and congestion. In contrast,
the local cache configuration carefully arranges data so that data
frequently accessed by a child thread can be locally homed and
cached. This minimizes remote data access and network conges-
tion. This will be evaluated in Section 4.2.

3.3 Maximum coding unit size

The HEVC intra prediction scheme can determine its maxi-

Fig. 3. Wavefront-style parallelization of an intra prediction algo-
rithm.

Fig. 2. Mesh interconnects-based 64 multicore system [9].

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

(a) regular encoding order

(b) wavefront encoding order

Fig. 4. Thread core configuration.

259Trans. Electr. Electron. Mater. 13(5) 256 (2012): Y. Choi et al.

mum coding unit size. According to this maximum coding unit
size, coding depths and coding parallelisms are defined. For
example, assume that the HEVC intra prediction starts coding
with a maximum coding unit size (128 pixels × 128 pixels). After
completing intra prediction for the coding unit, HEVC intra pre-
diction partitions the coding unit into 4 smaller coding units (64
× 64) for lower level intra predictions. This process is repeated
until the coding unit size reaches the minimum coding unit size
in order to locate an optimal intra prediction block partitioning
configuration, defining coding depths. Generally, plain back-
ground images are well coded in a higher maximum coding unit
size while fast changing and complicated images need to be
coded in a lower maxim coding unit size.

Additionally, this maximum coding unit size determines the
coding parallelism in a wavefront-style parallel implementation
because parallel processing is done at the level of maximum cod-
ing units. In this implementation, smaller maximum coding unit
size configurations can exploit higher parallelism because more
coding units are concurrently coded as shown in Fig. 3(b). How-
ever, in this case, the multicore system might suffer from higher
network traffic due to a higher parallelism and more communi-
cation messages. This will be evaluated in Section 4.4.

4. PERFROMANCE ANALYSIS OF
MULTICORE IMPLEMENTATION

To identify an efficient implementation of parallel HEVC intra
prediction schemes, this section evaluates the effects of imple-
mentation issues described in Section 3 on the parallel perfor-
mance of HEVC intra predictions. For this evaluation, the HEVC
intra prediction algorithm, TMuC 1.0 [8], is parallelized and ex-
ecuted in [9] under the following conditions: intra-only configu-
ration, 3 video sequences (PeopleOnStreet 2560×1600, ParkScene
1920×1080, BasketballDrill 832×480), minimum coding unit size:
8×8, QP=32, 100 frames encoded. The effect of each implemen-
tation issue is evaluated by measuring the speed-up and/or the
execution time for each case. The speed-up is obtained by divid-
ing the single-thread execution time of a given case with the cor-
responding parallel execution time.

4.1 The effect of main thread core location

In this evaluation, two main thread core locations are exam-
ined: (1) initial location and (2) migrated location. These loca-
tions of the main thread core are shown in Fig. 4. The migrated
location of the main thread core is selected by taking into ac-
count two things: (1) the average distance between the main
thread core and child thread cores and, (2) the overlaps of the
paths between the main thread core and child thread cores.
Three video sequences, i.e., PeopleOnStreet, ParkScene, Bas-

ketballDrill, are encoded using HEVC intra predictions with a
configuration of a 64×64 maximum coding unit size. Fig. 5 shows
the execution times to encode three video sequences under two
main thread core location configurations. As shown in the figure,
the migrated location of the main thread core reduces the execu-
tion time for intra predictions by up to 26% (PeopleOnStreet).
This shows that the careful selection of location in regards to the
main thread core can considerably mitigate network traffic and
congestion by reducing overlapped communication paths be-
tween the main thread core and child thread cores.

Additionally, in the figure, the larger video sequences, e.g.,
PeopleOnStreet, are shown to benefit more from the migrated
main thread core location than the smaller video sequences, e.g.,
BasketballDrill. This is because in the wavefront-style parallel-
ization, the parallelism of the larger video sequences are higher
than that of the smaller ones and thus, the higher parallelism re-
quiring more processing cores can have more communications
among cores, causing higher network congestions and requiring
a careful choice of a main thread core location. For example, the
maximum parallelism in PeopleOnStreet is 25 and the maximum
parallelism in BasketballDrill is 8 when the maximum coding
size is 64. In this case, PeopleOnStreet requires 25 processing
cores for its intra predictions while BasketballDrill needs only
8 processing cores, where PeopleOnStreet might suffer higher
communication demands among cores and thus, needs to select
the main thread core location more carefully.

4.2 Cache home policy

This section evaluates two cache policies described in Sec-
tion 3.2, i.e., no local cache and local cache. For the evaluation,
three video sequences are encoded by executing wavefront-style
parallel HEVC intra predictions. A 64×64 maximum coding unit
size is assumed. Fig. 6 shows execution times for encoding three
video sequences in two cache home policies. As shown in the
figure, the performance of a local home policy is higher than the
one of no local home policy (up to 19% faster encoding speed).
This is because, in a local home cache policy, most data requests
can be satisfied by local cache while, in the no local home cache
policy, most data requests always need go to their remote home,
causing a long communication time. This is also verified in Fig.
7, which shows the speed-up of two different local home cache
policies. In this figure, the local home cache policy achieves a
higher speed-up of up to 22% compared to the no-local home
cache policy.

Additionally, in Fig. 6, the effect of the home cache policy on
performance is higher in larger images than in smaller images.
This is because, in a small image, the number of requested pro-
cessing nodes is small, due to its lower parallelism and thus, the
average distance to remote data home nodes and its associated
accessing time are small, mitigating the benefit of the local home
cache policy. However, considering HEVC is developed for larger

Fig. 5. Execution times for different main thread core locations.

Fig. 6. Execution times for different cache home policies.

Trans. Electr. Electron. Mater. 13(5) 256 (2012): Y. Choi et al.260

video images, in most cases, the cache home policy needs to be
taken into account for more efficient implementations.

4.3 Maximum coding unit size

As described in Section 3.3, a maximum coding unit size di-
rectly affects the parallelism of intra predictions in a wavefront-
style parallel implementation. To evaluate the effect of maximum
coding unit size on parallel performance, this section measures
the parallel performance of three different maximum coding unit
sizes, i.e., 128, 64, 32. The maximum parallelisms of these three
coding unit sizes are 8, 25, and 51, respectively. Fig. 8 and 9(a~c)
present the execution times and the speed-ups of three maxi-
mum coding unit sizes and three video sequences.

As shown in Fig. 8, smaller maximum coding unit sizes dem-
onstrate higher parallel performance because smaller coding
unit sizes allow a higher parallelism. Especially, the performance
difference between 128 and 64 maximum coding unit sizes is
higher than the one between 64 and 32. This is because too
much parallelism requires a higher number of processing nodes,
requiring a higher communication demand and suffering from
long communication latencies. Furthermore, limiting the maxi-
mum coding unit size for a higher parallelism can hamper the
coding efficiency of HEVC by reducing the chance to find a larger
coding redundancy. Consequently, a careful determination of
parallelism size in a parallel implementation is important not
only for speed but also for compression efficiency. This result is
verified in Figs. 9(a~c), which show the speed-ups of three maxi-
mum coding unit sizes in three video sequences.

4.4 Discussion

For an efficient parallel implementation, in this section, sev-
eral parallel implementation choices are evaluated. From the
provided evaluation results, the effect of main thread core loca-
tion, cache home policy, and the maximum coding unit size on
parallel performance is shown to be significantly large. Main
thread core location can affect network traffic by determining

communication path overlaps among processing cores, which
significantly affects communication latencies and overall parallel
execution times. The cache home policy also affects parallel per-
formance by enabling to locally cache data, thereby significantly
reducing communication overheads. Lastly, maximum coding
unit sizes are shown to be important in increasing parallel execu-
tion speed and compression efficiency. Consequently, this paper
investigates the effects of various parallel implementation choic-
es in a mesh interconnection network-based multicore system.
Unlike a simple bus-based small-scale multicore system, a more
complicated communication activity occurs, affecting parallel
performance. Consequently, in order to achieve a higher parallel
performance, we need to minimize communication overheads
by carefully determining main thread core location, cache home
policy, and the maximum coding unit size.

5. CONCLUSION

This work investigates an implementation of a multithreaded
HEVC intra prediction for a photovoltaic monitoring system
which investigates the degradation process. This investigation
evaluates three design choices for parallel intra predictions in ex-

Fig. 7. Speed-ups for different cache home policies.

Fig. 8. Execution times for different maximum coding unit sizes.

Fig. 9. Speed-ups for three video sequences using three maximum
coding unit sizes (a) speed-ups for PeopleOnStreet (2,560×1,600), (b)
Speed-ups for ParkScene (1,920×1,080), and (c) speed-ups for Basket-
ballDrill (832×480).

(a)

(b)

(c)

261Trans. Electr. Electron. Mater. 13(5) 256 (2012): Y. Choi et al.

ecution times and speed-ups. Through an extensive evaluation,
main thread core location, cache home policy, and maximum
coding unit size are shown to significantly affect the parallel
performance of intra predictions by determining communica-
tion overheads. Carefully chosen design options for these three
improves the parallel performance of HEVC intra predictions by
up to 42% and increases speed-up by 7 times. This shows that
minimizing communication overheads plays a critical role in
implementing a multithreaded HEVC intra prediction. In other
words, in a mesh-based many-core system, the network con-
necting processing cores might be a performance bottleneck by
being saturated.

REFERENCES

[1] 	 D. Sera, R. Teodorescu, P. Rodriguez, Partial Shadowing Detec-
tion based on Equivalent Thermal Voltage Monitoring for PV
Module Diagnostics, IECON, 2009: 708-713 [DOI: http://dx.doi.
org/10.1109/IECON.2009.5415006].

[2] 	 L. Cristaldi, M. Faifer, M. Rossi, F. Ponci, Monitoring of a PV Sys-
tem: The role of the Panel Model, IEEE International Workshop
on Applied Measurements for Power Systems, 2011: 90-95 576
[DOI: http://dx.doi.org/10.1109/AMPS.2011.6090437].

[3] 	 G. Notton, V. Lazarov, L. Stoyanov, Optimal Sizing of a Grid-

connected PV System for Various PV Module Technologies and
Inclinations, Inverter Efficiency Characteristics and Locations,
(Renewable Energy 35, 2010) pp.541-554

[4] 	 T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, IEEE
Trans. Circuits Syst. Video Technol. 2003 13(7): 560-576 [DOI:
http://dx.doi.org/10.1109/TCSVT.2003.815165].

[5] 	 Zhuo Zhao, Ping Liang, IEEE International Symposium
on Circuits and Systems, 2006: 4-2672 [DOI: http://dx.doi.
org/10.1109/ISCAS 2006.1693173].

[6] 	 K. McCann, W. Han, I. Kim, J. Min, E. Alshina, T. Lee, J. Chen, V.
Seregin, S. Lee, Y. Hong, M. Cheon, N. Shlyakhov, Video Coding
Technology proposal by Samsung, JCTVC-A124, Dresden, Ger-
man, Apr.

[7] 	 K. Ugur, R. Andersson, A. Fuldseth, Video Coding Technology
Proposal by Tandberg, Nokia and Ericsson, JCTVC-A119, Dres-
den, German, Apr.

[8] 	 HEVC Reference Software TMuC1.0 [Online], Available: https://
hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/HM-1.0.

[9] 	 B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, Liewei Bao, J. Brown, M. Mattina, Miao Chyi-Chang, C.
Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D.
Khan, F. Montenegro, J. Stickney, J. Zook, Tile64 – Processor: A
64-Core SoC with Mesh Interconnect, ISSCC 2009: 88-598 [DOI:
http://dx.doi.org/10.1109/ISSCC2008.4523070].

